Effects of Die Temperature of SSS Die Casting on the Microstructure and Mechanical Properties of ADC12 Aluminum Alloy

2010 ◽  
Vol 97-101 ◽  
pp. 932-936
Author(s):  
Lian Qing Ji ◽  
Jian Min Shao ◽  
Guo Quan Xiang ◽  
Li Qian

In the present paper, the effects of different die temperatures on microstructures and mechanical properties of aluminum alloy ADC12 at Super Slow Speed (SSS) die casting have been investigated, in order to optimize the die-casting process and its parameters. The results show that under SSS experimental condition, the density of castings is higher than that of general die castings. Die temperature has the best value, when the die temperature is 150 °C, smaller dendrites are distributed in the hardened surface layer, and the eutectics structure of and Si changes from needle-like structure into herringbone structure. The properties of the die casting are significantly influenced by the die temperature, the optimum die temperature is 150 °C.

2013 ◽  
Vol 312 ◽  
pp. 475-479
Author(s):  
Wei Gang Zheng ◽  
Cun Hong Yin ◽  
Yu Hong Yuan ◽  
Zhen Min Pan ◽  
Chao Tang

This paper analyzes traditional die casting process to find out the reasons that cause shrinkage cavity and porosity defects in casting. An optimized process of die casting by using local extrusion is proposed. A device used in local extrusion which realizes forcing compensating contraction on key parts of crankcase is designed and the parameters of local extrusion process are discussed. Compared the mechanical properties and microstructure of local extrusion used in die casting production with traditional. It shows that local extrusion used in die casting production can not only achieve the aim eliminating shrinkage porosity and cavity of a casting but also can refine grain to improve the mechanical properties.


2014 ◽  
Vol 680 ◽  
pp. 11-14
Author(s):  
Ke Ren Shi ◽  
Sirikul Wisutmethangoon ◽  
Jessada Wannasin ◽  
Thawatchai Plookphol

In this study, semi-solid Al-Mg-Si alloy (AC4C) was produced by using the Gas Induced Semi-Solid (GISS) die casting process. The tensile strength and ductility of the semi-solid die cast Al alloy (GISS-DC) after T6 heat treatment were investigated and compared with those of the conventional liquid die casting (CLDC). The microstructures of GISS-DC and CLDC observed by an optical microscopy were presented. The ultimate tensile strength (UTS) and yield strength (0.2% YS) of GISS-DC are compatible with those of the CLDC. However, the GISS-DC has better ductility than the CLDC, this may be due to the smaller and more globular primary α-Al phase and rounder shaped-Si particle microstructures presented in the GISS-DC. Common shrinkage pores and defects were also observed by SEM from the fracture surfaces of both alloys.


2016 ◽  
Vol 707 ◽  
pp. 144-147
Author(s):  
Ying Pio Lim ◽  
Wei Hong Yeo ◽  
A. Masita

In this project, the addition of scandium (Sc) into A356 aluminium alloy was studied for its effect on the mechanical properties after gravity die casting process. Scandium addition was administered at the weight percentages of 0.1, 0.2 and 0.3. The results obtained in this work revealed that scandium can significantly enhance the mechanical properties of A356 alloy in terms of tensile strength, hardness and charpy impact strength. In general, the addition of 0.2 wt% Sc in A356 alloy was found to be able to achieve the maximum tensile strength of 172.94MPa as compared to 136.03MPa for sample without Sc. No significant improvement in tensile strength was found when more than 0.3wt% added to the alloy. As for hardness, the sample with 0.3 wt% Sc attained the maximum Vicker’s hardness of 86.60 HV as compared to 76.48 HV for unmodified A356. Similarly, the addition of 0.3wt% Sc in A356 can achieve highest impact energy of 2.71J as compare to 1.09J for unmodified A356.


2021 ◽  
Vol 268 ◽  
pp. 01076
Author(s):  
Zengrong Hu ◽  
Xiaonan Wang ◽  
Xiaming Chen ◽  
Pengcheng Huan ◽  
Weihua Li ◽  
...  

In order to improve the comprehensive properties of casting aluminum, and to fulfill the requirements of forming thin wall fins for communication products, mechanical stirring was employed to prepare the semi-solid aluminum alloy AlSi8. communication products were produced by the semi-solid die casting process. The microstructure and mechanical and thermal properties were studied. The test results show that the microstructure of semi-solid die-casting samples changes from dendrite to globular microstructure, and the average tensile strength, elongation and thermal conductivity are 220MPa, 7% and 170 W/(m*K), respectively, which is significantly higher than that of the common die-casting samples. It was proved that the semi-solid die casting technology can be used in actual production and improve the products quality.


2015 ◽  
Vol 752-753 ◽  
pp. 7-10 ◽  
Author(s):  
Waraporn Jumpol ◽  
Jessada Wannasin ◽  
Somjai Janudom ◽  
Rungsinee Canyook ◽  
Thawatchai Plookphol ◽  
...  

The effects of Gas Induced Semi-Solid (GISS) in the slurry die casting process on defects of 7075 aluminum alloy were studied, different initial solid fractions with 10, 15, and 20 sec of rheocasting time were investigated. The results showed that the percentage of porosity in semi-solid die casting was smaller than in the liquid die casting. In terms of the initial solid fraction in 7075 aluminum alloy, it was found that the defects were found when the initial solid fraction was high. In addition.


2017 ◽  
Vol 898 ◽  
pp. 1254-1260
Author(s):  
Hong Xing Lu ◽  
Qiang Zhu ◽  
Da Quan Li ◽  
Fan Zhang

Semi-solid die casting technology has great advantages at defects control and has been successfully used to produce high quality aluminum alloy components for several years. In this process, semi-solid metal with high apparent viscosity and low plunger velocity are used to avoid surface turbulence which is the main source of entrapped gas in conventional die casting processes. But, entrapped gas still has other sources, such as melting, pouring, surface flooding and confluence weld. Solution heat treatment is always used to strengthen semi-solid die castings. The entrapped gas leads to blister defects, which directly decreases the acceptance rate of semi-solid die castings. So, the entrapped gas is still a serious issue in semi-solid die casting process. We studied the floating behavior of entrapped gas bubble in semi-solid metal. Two floating models were established for gas bubbles with different sizes. These models were used to analyze the possibility of entrapped gas escaping from semi-solid metal in casting practice. The results showed that entrapped gas from feed billet could not escape from the semi-solid metal in the casting process of impeller, which was proved by experiment results. These results emphasized the importance of clean melt and semi-solid metal. Some advices were given at last for avoiding or removing the entrapped gas in semi-solid die casting process.


Sign in / Sign up

Export Citation Format

Share Document