Corrosion Resistance on the Interlayer of AISI 316L/AISI 304 Stainless Steels Joined with an Iron Based Metallic Glass Ribbon at 1000 °C by Induction Heating

2014 ◽  
Vol 976 ◽  
pp. 108-113 ◽  
Author(s):  
Jorge A. Verduzco ◽  
Jorge A. Gonzalez ◽  
Víctor H. Verduzco ◽  
Carlos E. Borja ◽  
José Guadalupe Quezada ◽  
...  

This work presents a study of the corrosion resistance as a function of the holding time on the interface generated during the process of brazing an AISI 304 to AISI 316L stainless steels by using a non-commercial Fe60Ni12Cr8P13B7 metallic glass alloy ribbon by induction heating at 1000 °C into a chamber with an Ar controlled atmosphere. Samples of the austenitic stainless steels were joined in a sandwich-like arrangement using the Fe-based metallic glass ribbon. Corrosion experiments carried out in distilled water and 3.5 wt. % sodium chloride solution revealed that the corrosion resistance was higher for samples tested in the distilled water than the latest medium for all dwell joining times, since in the former medium the samples passivated. It was also found that the highest corrosion resistance was achieved for samples joined for a dwelling time of 4 minutes.

2020 ◽  
Vol 27 ◽  
pp. 53-56
Author(s):  
Zdeněk Joska ◽  
Zdeněk Pokorný ◽  
Jaromír Kadlec ◽  
Zbyněk Studený ◽  
Emil Svoboda

Stainless steels, particularly the austenitic stainless grades are widely used in many industries due to good corrosion resistance, but very poor mechanical properties as surface hardness and wear resistance limit its possible use. Plasma nitriding is one of the few ways to increase the surface hardness of these steels, even though this will affect its corrosion resistance. This paper focuses on the description of the mechanical properties of nitrided layers in the two most widespread austenitic stainless steels AISI 304 and AISI 316L. The microstructure and properties of nitrided layers were evaluated by metallography and microhardness measurement. Surface properties of nitrided steels were characterized by Martens hardness. The results show that plasma nitriding created very hard nitrided layers with thickness about 40 μm and microhardness about 1300 HV0.05. Surface hardness measurements have shown that the maximum values for both steels are about 8.5 GPa, but have different behaviour under higher loads, when the AISI 316L nitrided layer began to crack on the surface and sink.


2013 ◽  
Vol 794 ◽  
pp. 230-237 ◽  
Author(s):  
K. Chandra Sekhar ◽  
Bhagwati Prasad Kashyap ◽  
Sandeep Sangal

Stainless steels such as ferrritic, austenitic, martensitic and duplex stainless steels are well known for their corrosion resistance to varying extents. Among these, austenitic stainless steels exhibit superior corrosion resistance and better ductility for formability. Therefore, the ability to give simple to intricate shapes in this grade of steel brings their potential for a wide range of applications. However, the meta-stable austenite in AISI 304 is known to undergo a strain induced martensitic (SIM) transformation during conventional rolling at room temperature. This strain induced martensite causes reduction in ductility and limits formability of stainless steel. Therefore, wavy rolling technique was developed to strengthen the stainless steel through microstructural refinement. In the current study, wavy rolling with 1.5 mm amplitude was conducted on 1 mm thick stainless steel sheet to different cycles ranging from 1-4. These rolled samples were characterized by optical and Atomic Force Microscopy (AFM) with resolutions down to the nanolevel. This AFM tool is in a position to bring out the details of grain refinement and topographical roughness emerging from crystalline and microstructural defects like orientation, precipitation, stacking faults, deformation bands, slip lines and shear bands with progress in rolling as referred by the number of rolling cycles here. The structural development is semi-quantitatively related to the degree of deformation and its effect on tensile properties during wavy rolling cycle. Keywords: Structural properties; Roughness; Deformation; Wavy rolling.


Alloy Digest ◽  
1999 ◽  
Vol 48 (8) ◽  

Abstract ALZ 316 is an austenitic stainless steel with good formability, corrosion resistance, toughness, and mechanical properties. It is the basic grade of the stainless steels, containing 2 to 3% molybdenum. After the 304 series, the molybdenum-containing stainless steels are the most widely used austenitic stainless steels. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-756. Producer or source: ALZ nv.


Alloy Digest ◽  
2016 ◽  
Vol 65 (1) ◽  

Abstract NSSMC-NAR-SN-1, SN-3, and SN-5 are austenitic stainless steels with corrosion resistance to nitric acid. The alloys can be abbreviated as NSSMC-NAR-SN-1: LC-17Cr-14Ni-4Si, NSSMC-NAR-SN-3: LC-11Cr-17Ni-6Si-Zr-Ti, and NSSMC-NAR-SN-5: LC-27Cr- 8Ni-Si-N. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: SS-1237. Producer or source: Nippon Steel and Sumitomo Metal Corporation.


Alloy Digest ◽  
2015 ◽  
Vol 64 (12) ◽  

Abstract NSSMC-NAR-AC-3 and AC-4 are austenitic stainless steels with excellent corrosion resistance, especially to seawater. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming. Filing Code: SS-1234. Producer or source: Nippon Steel and Sumitomo Metal Corporation.


Alloy Digest ◽  
1998 ◽  
Vol 47 (2) ◽  

Abstract ALLOY 0Cr25Ni6Mo3CuN is one of four grades of duplex stainless steel that were developed and have found wide applications in China since 1980. In oil refinement and the petrochemical processing industries, they have substituted for austenitic stainless steels in many types of equipment, valves, and pump parts. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming and joining. Filing Code: SS-706. Producer or source: Central Iron & Steel Research Institute.


2014 ◽  
Vol 595 ◽  
pp. 103-112 ◽  
Author(s):  
Richard K.C. Nkhoma ◽  
Charles W. Siyasiya ◽  
Waldo E. Stumpf

Sign in / Sign up

Export Citation Format

Share Document