Selecting Filter Range of Hybrid Brain-Computer Interfaces by Mutual Information

2014 ◽  
Vol 981 ◽  
pp. 171-174 ◽  
Author(s):  
Li Wang ◽  
Xiong Zhang ◽  
Xue Fei Zhong ◽  
Zhao Wen Fan

The hybrid brain-computer interface (BCI) based on electroencephalography (EEG) become more and more popular. Motor imagery, steady state visual evoked potentials (SSVEPs) and P300 are main training Paradigms. In our previous research, BCI systems based on motor imagery can be extended by speech imagery. However, noise and artifact may be produced by different mental tasks and EEG signals are also different among users, so the classification accuracy can be improved by selecting optimum frequency range for each user. Mutual information (MI) is usually used to choose optimal features. After extracted the features from each narrow frequency range of EEG by common spatial patterns (CSP), the features are assessed by MI. Then, the optimum frequency range can be acquired. The final classification results are calculated by support vector machine (SVM). The average result of optimum frequency range from seven subjects is better than the result of a fixed frequency range.


Fuzzy Systems ◽  
2017 ◽  
pp. 347-366
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.



2016 ◽  
Vol 5 (4) ◽  
pp. 64-82 ◽  
Author(s):  
Shereen A. El-aal ◽  
Rabie A. Ramadan ◽  
Neveen I. Ghali

Electroencephalogram (EEG) signals based Brain Computer Interface (BCI) is employed to help disabled people to interact better with the environment. EEG signals are recorded through BCI system to translate it to control commands. There are a large body of literature targeting EEG feature extraction and classification for Motor Imagery tasks. Motor imagery task have several features can be extracted to use in classification. However, using more features consume running time and using irrelevant and redundant features affect the performance of the used classifier. This paper is dedicated to extracting the best feature vector for motor imagery task. This work suggests two feature selection methods based on Mutual Information (MI) including Minimum Redundancy Maximal Relevance (MRMR) and maximal Relevance (MaxRel). Adaptive Neuro Fuzzy Inference System (ANFIS) classifier with Subtractive clustering method is utilized for EEG signals classifications. The suggested methods are applied to BCI Competition III dataset IVa and IVb and BCI Competition II dataset III.



Author(s):  
Pasquale Arpaia ◽  
Francesco Donnarumma ◽  
Antonio Esposito ◽  
Marco Parvis

A method for selecting electroencephalographic (EEG) signals in motor imagery-based brain-computer interfaces (MI-BCI) is proposed for enhancing the online interoperability and portability of BCI systems, as well as user comfort. The attempt is also to reduce variability and noise of MI-BCI, which could be affected by a large number of EEG channels. The relation between selected channels and MI-BCI performance is therefore analyzed. The proposed method is able to select acquisition channels common to all subjects, while achieving a performance compatible with the use of all the channels. Results are reported with reference to a standard benchmark dataset, the BCI competition IV dataset 2a. They prove that a performance compatible with the best state-of-the-art approaches can be achieved, while adopting a significantly smaller number of channels, both in two and in four tasks classification. In particular, classification accuracy is about 77–83% in binary classification with down to 6 EEG channels, and above 60% for the four-classes case when 10 channels are employed. This gives a contribution in optimizing the EEG measurement while developing non-invasive and wearable MI-based brain-computer interfaces.



Sensors ◽  
2019 ◽  
Vol 19 (13) ◽  
pp. 2854 ◽  
Author(s):  
Kwon-Woo Ha ◽  
Jin-Woo Jeong

Various convolutional neural network (CNN)-based approaches have been recently proposed to improve the performance of motor imagery based-brain-computer interfaces (BCIs). However, the classification accuracy of CNNs is compromised when target data are distorted. Specifically for motor imagery electroencephalogram (EEG), the measured signals, even from the same person, are not consistent and can be significantly distorted. To overcome these limitations, we propose to apply a capsule network (CapsNet) for learning various properties of EEG signals, thereby achieving better and more robust performance than previous CNN methods. The proposed CapsNet-based framework classifies the two-class motor imagery, namely right-hand and left-hand movements. The motor imagery EEG signals are first transformed into 2D images using the short-time Fourier transform (STFT) algorithm and then used for training and testing the capsule network. The performance of the proposed framework was evaluated on the BCI competition IV 2b dataset. The proposed framework outperformed state-of-the-art CNN-based methods and various conventional machine learning approaches. The experimental results demonstrate the feasibility of the proposed approach for classification of motor imagery EEG signals.



IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 171431-171451 ◽  
Author(s):  
Muhammad Tariq Sadiq ◽  
Xiaojun Yu ◽  
Zhaohui Yuan ◽  
Fan Zeming ◽  
Ateeq Ur Rehman ◽  
...  


2019 ◽  
Vol 29 (03) ◽  
pp. 2050034 ◽  
Author(s):  
Jin Wang ◽  
Qingguo Wei

To improve the classification performance of motor imagery (MI) based brain-computer interfaces (BCIs), a new signal processing algorithm for classifying electroencephalogram (EEG) signals by combining filter bank and sparse representation is proposed. The broadband EEG signals of 8–30[Formula: see text]Hz are segmented into 10 sub-band signals using a filter bank. EEG signals in each sub-band are spatially filtered by common spatial pattern (CSP). Fisher score combined with grid search is used for selecting the optimal sub-band, the band power of which is employed for designing a dictionary matrix. A testing signal can be sparsely represented as a linear combination of some columns of the dictionary. The sparse coefficients are estimated by [Formula: see text] norm optimization, and the residuals of sparse coefficients are exploited for classification. The proposed classification algorithm was applied to two BCI datasets and compared with two traditional broadband CSP-based algorithms. The results showed that the proposed algorithm provided superior classification accuracies, which were better than those yielded by traditional algorithms, verifying the efficacy of the present algorithm.



Sensors ◽  
2020 ◽  
Vol 20 (12) ◽  
pp. 3496
Author(s):  
Jiacan Xu ◽  
Hao Zheng ◽  
Jianhui Wang ◽  
Donglin Li ◽  
Xiaoke Fang

Recognition of motor imagery intention is one of the hot current research focuses of brain-computer interface (BCI) studies. It can help patients with physical dyskinesia to convey their movement intentions. In recent years, breakthroughs have been made in the research on recognition of motor imagery task using deep learning, but if the important features related to motor imagery are ignored, it may lead to a decline in the recognition performance of the algorithm. This paper proposes a new deep multi-view feature learning method for the classification task of motor imagery electroencephalogram (EEG) signals. In order to obtain more representative motor imagery features in EEG signals, we introduced a multi-view feature representation based on the characteristics of EEG signals and the differences between different features. Different feature extraction methods were used to respectively extract the time domain, frequency domain, time-frequency domain and spatial features of EEG signals, so as to made them cooperate and complement. Then, the deep restricted Boltzmann machine (RBM) network improved by t-distributed stochastic neighbor embedding(t-SNE) was adopted to learn the multi-view features of EEG signals, so that the algorithm removed the feature redundancy while took into account the global characteristics in the multi-view feature sequence, reduced the dimension of the multi-visual features and enhanced the recognizability of the features. Finally, support vector machine (SVM) was chosen to classify deep multi-view features. Applying our proposed method to the BCI competition IV 2a dataset we obtained excellent classification results. The results show that the deep multi-view feature learning method further improved the classification accuracy of motor imagery tasks.



Sign in / Sign up

Export Citation Format

Share Document