The Research of Trap Level Distribution of PI/AlN (Treated)-MMT Films with Different Contents Based on Decay Charge Theory

2014 ◽  
Vol 981 ◽  
pp. 855-858
Author(s):  
Yuan Yuan Liu ◽  
Jing Hua Yin ◽  
Yao Lei

Through the theoretical deviation based on charge decay theory a trap level distribution function relative to the isothermal discharge current is given in this paper. Based on that, the effect of AlN(treated)-MMT nanoparticles with different contents of 1wt%, 3wt%, 5wt% on surface trap level distribution is researched. The experimental results show that the trap level density is significantly increased compared with traditional IDC and TSC methods. Trap level density and the number of trap charges increase due to the doping AlN (treated)-MMT nanoparticles, and increase with doping contents. The maximum trap energy level density of AlN(treated)-MMT film with 5wt% is 9.14×1024/(eV·m3), which is 3.3 times compared with the PI film corresponding to the trap level in the range of 1.0~1.1eV. The trap level density is affected by the interface trap effect caused by the AlN(treated)-MMT nanoparticles and different contents.

1990 ◽  
Vol 198 ◽  
Author(s):  
D. K. Nayak ◽  
K. Kamjoo ◽  
J. S. Park ◽  
J. C. S. Woo ◽  
K. L. Wang

ABSTRACTA cold-wall rapid thermal processor is used for the oxidation of commensurately grown GexSi1−x layers on Si substrates. It is shown for dry oxidation that the oxidation rate of GeSi is the same as that of Si. The dry oxidationrate of GeSi is independent of Ge concentration (up to 20 % considered in this study) in the GeSi layer. For wet oxidation, however, the rate of oxidation of the GexSi1−x layer is found to be significantly higher than that of pure Si, and the oxidation rate increases with the Ge concentration in GexSi1−x layer. Employing highfrequency and quasistatic Capacitance-Voltage measurements, it is found for a thin oxide that a fixed negative oxide charge density in the range of 1011 – 1012/cm2, and the interface trap level density (in the mid-gap region) of about 1012 /cm2.eV are present. Further, the density of this fixed oxide charge at the SiO2 /GeSi interface is found.to increase with the Ge concentration in the commensurately grown GeSi layers.


1990 ◽  
Vol 68 (3) ◽  
pp. 301-312 ◽  
Author(s):  
Gaetan J. H. Laberge ◽  
Rizwan U. Haq

Starting from an appropriate decomposition of the level density into an average and fluctuating part, we studied the energy level fluctuations of an ensemble defined by two-body random Hamiltonians. A detailed analysis of several spectrally averaged fluctuation measures shows close agreement with the predictions of the Gaussian orthogonal ensemble (GOE). This confirms earlier indications that, except for noninteracting particles, fluctuation measures are insensitive to the rank of the interaction. Further, analysis of spectra obtained from realistic nuclear interactions agrees well with the GOE indicating that specific properties of the Hamiltonian have little or no influence on fluctuations. These results, therefore, strengthen our belief in the "universality" of GOE fluctuations.


Author(s):  
Suryaji R. Bhonsle ◽  
Paul Thompson

Abstract Weibull, log normal, and some other Distribution function models (D.F.M.) have a tendency to deviate from experimental results. This deviation, either exceedingly conservative or nonconservative, is amplified at low probabilities of failure. To remedy such problems a new D.F.M. is derived. It is then used to predict low probabilities of failure. The predictions are consistent with experimental data and are not too conservative or too nonconservative.


1992 ◽  
Vol 539 (1) ◽  
pp. 17-36 ◽  
Author(s):  
Shalom Shlomo
Keyword(s):  

1993 ◽  
Vol 138 ◽  
pp. 87-97 ◽  
Author(s):  
Robert L. Kurucz

AbstractI have developed a new version of my model atmosphere program called ATLAS12. It recognizes more than 1000 species, each in up to 10 isotopic forms, including all ions of the elements up through Zn and the first 5 ions of heavier elements up through Es. The elemental abundances are treated as variable with depth. ATLAS12 has 6 input files of line data containing 58,000,000 atomic and molecular lines. For each line the wavelength, identification, lower energy level, gf, radiative, Stark, and van der Waals damping constants are packed into 16 bytes. At each wavelength point in a frequency integration the profiles of all the significant nearby lines are computed and summed. The program and line files will be distributed in the fall of 1992.There are no significant differences at A0 between an opacity-sampled model computed with ATLAS12 and opacity-distribution-function model computed with ATLAS9. ATLAS12 allows arbitrary abundances but is slower. The new program can be used to produce improved models for Am and Ap stars that include the effects of millions of lines.


2011 ◽  
Vol 13 (33) ◽  
pp. 14902 ◽  
Author(s):  
Haiping He ◽  
Yanjie Wang ◽  
Jingrui Wang ◽  
Zhizhen Ye

Author(s):  
A. Teramoto ◽  
T. Fujisawa ◽  
K. Abe ◽  
S. Sugawa ◽  
T. Ohmi

Sign in / Sign up

Export Citation Format

Share Document