Research on Combined Peak Load Regulation with Hydropower, Thermal Power and Nuclear Power Plants

2014 ◽  
Vol 986-987 ◽  
pp. 465-469 ◽  
Author(s):  
Gang Wang ◽  
Xiao Dong Ma ◽  
Chao Wang ◽  
Peng Ye

Base on Nuclear Power Plant (NPP) participating in peak load regulation of power grid, this paper studies the operation mode of hydropower, thermal power and NPP in Combined Peak Load Regulation. The optimization model for Peaking depth of NPP was set up. The case based on actual power grid were calculated and analyzed, results of the research show that in combined peak load regulation of hydropower, thermal power and NPP, a reasonable peaking depth of NPP will effectively alleviate the peaking pressure of power grid, avoid start-stop of thermal power and abandoned water of hydropower, while ensuring the hydroelectric generating capacity in the low load periods, and ensure thermal power output smooth, it further reduce the operating costs, verify the effectiveness of the model.

2014 ◽  
Vol 672-674 ◽  
pp. 477-481 ◽  
Author(s):  
Jie Zhao ◽  
Yu Heng Tang ◽  
Li Wang ◽  
Di Chen Liu

Nuclear power plants (NPP) have to face urgent requirement of participating in peak load regulation of power grid. The peak load regulation performances of NPP were researched. Based on the calculation and analysis on peak load regulation cost and benefit of NPP, the location, criterion and peak balance algorithm of NPP participating in peak regulation were proposed. Results of the actual research show that NPP possesses better ability of peak load regulation and the cost is lower, so NPP can participate in daily peak load regulation, which will improve both security and flexibility of power grid and enhance the efficiency of resource configuration. However, the depth and speed of peak load regulation by NPP are restricted by security and economy.


Author(s):  
Ning Xiao ◽  
Qingchuan Zhang ◽  
Zhiyuan Xu ◽  
Yanna Li

Following the unceasing changes in power demand and the power utility structure in China, the load fluctuation characteristics of the power grid are gradually increasing. The capacity of the power grid’s peak-load regulation and transmission has become the bottleneck of nuclear power and intermittent renewable energy consumption. In some jurisdictions of China, the curtailment of the wind and solar power output is higher than 30%, and the unplanned halt of nuclear power plant operation happens periodically. These phenomena cause energy efficiency decreases and potential safety hazards for nuclear power generation units. How to increase the “flexibility” of the power system has become a main issue of China’s power grid that can contribute to the promotion of nuclear power plants’ production and reduce the curtailment of wind and solar energy. Based on China’s power grid structure, the power plants’ geographical distribution, the power plants’ operation characters, the power grid load characteristics, and the power grid operation modes, the performances of various types of power sources participating in daily load regulation are compared, including the peak-load regulation capacity, response characteristics, environmental benefits and economic benefits. On account of the above outcome, drawing on the experience of international research results and based on a feasible power plant’s load characteristics and operation economy, a strategy of power plants participating in peak-load regulation is proposed, and an evaluation index system is built. The strategy and index are both used to elevate the power grid’s power quality and operation economy, optimize the multi-energy coupling power supply model, and evaluate the PWR units’ core competence. A peak-load regulation strategy and policy proposal is concluded in the treatise.


2013 ◽  
Vol 416-417 ◽  
pp. 2110-2113
Author(s):  
Xing Liu

This paper, focusing on the practical moving condition of the thermal power plants, studied in detail that how to did the curve fitting according to the units data collected from Tianjin Dagang Power Plant; studied the each fuel loss in the process of start-stop the units and their calculation methods; and put forward that fuel consumption and life expenditure while starting and stopping the units should be considered when using peak-load regulation; worked out the GA program and proved GAs accuracy and superiority through the calculation examples, and showed that GA had great practical and research meaning.


2021 ◽  
Vol 2087 (1) ◽  
pp. 012023
Author(s):  
Haijie Sun ◽  
Jianxing Ren ◽  
Fangqin Li ◽  
Mengping Cheng ◽  
Ze Wang

Abstract As the installed capacity of wind power and other renewable energy sources continues to increase, the intermittent and volatility of their output has put tremendous pressure on the safe and stable operation of the power grid. The demand for peak shaving is becoming increasingly urgent. In this paper, the electrolysis hydrogen production system participates in the deep peak shaving of coal-fired generators. Through the participation of load regulation of the electrolysis hydrogen production system, according to the requirements of the power grid on the different loads of the unit, the load of the electrolysis hydrogen production system is adjusted to adjust the load of the unit. In order to realize full-load regulation of coal-fired thermal power plants and improve the power generation efficiency of units.


Author(s):  
Jiasheng Wang ◽  
Jingliang Zhong ◽  
Xiaolong Gou

Nowadays, quantity of coal-fired power plant and its single unit capacity are greatly improved in China, and power grid’s frequency and peak-load regulation range become wider. Based on the basic regulation theory and unit’s characteristics, this paper indicates the limitations of unit’s original control strategies and such limitations have produced great damages to coal-fired boilers through assessment of 2 years statistical data of boiler tube explosion in regional power grid. Under field tests, the quantified boiler heat storage capacity of six typical thermal power units in the power grid is provided. Comparisons of these six coal-fired boilers are made for getting the relationships between BHSC and boilers’ tube explosion ratio under the in-depth frequency and peak-load regulation. The results show that unit’s boiler heat storage capacity varies greatly amongst boilers with different types and is inversely proportional to boiler’s installed capacity and steam parameter class, and boiler heat storage capacity is inversely proportional to boiler’s tube explosion ratio, which is in conformity with the theory analysis. After that, in-depth frequency and peak-load regulation tests of thermal power units are carried out, respectively. The results show pulverized coal-fired boiler with small boiler heat storage capacity is not suitable for in-depth frequency and peak-load regulation for the safety of power grid and unit itself, while the circulating fluidized bed boiler and pulverized coal-fired boiler with larger boiler heat storage capacity have better adaptability for these functions. Some effective control strategies of frequency and peak-load regulation are presented in load’s rate and range by boiler heat storage capacity of units.


Author(s):  
Yifan Wu ◽  
Wei Li ◽  
Deren Sheng ◽  
Jianhong Chen ◽  
Zitao Yu

Clean energy is now developing rapidly, especially in the United States, China, the Britain and the European Union. To ensure the stability of power production and consumption, and to give higher priority to clean energy, it is essential for large power plants to implement peak shaving operation, which means that even the 1000 MW steam turbines in large plants will undertake peak shaving tasks for a long period of time. However, with the peak load regulation, the steam turbines operating in low capacity may be much more likely to cause faults. In this paper, aiming at peak load shaving, a fault diagnosis method of steam turbine vibration has been presented. The major models, namely hierarchy-KNN model on the basis of improved principal component analysis (Improved PCA-HKNN) has been discussed in detail. Additionally, a new fault diagnosis method has been proposed. By applying the PCA improved by information entropy, the vibration and thermal original data are decomposed and classified into a finite number of characteristic parameters and factor matrices. For the peak shaving power plants, the peak load shaving state involving their methods of operation and results of vibration would be elaborated further. Combined with the data and the operation state, the HKNN model is established to carry out the fault diagnosis. Finally, the efficiency and reliability of the improved PCA-HKNN model is discussed. It’s indicated that compared with the traditional method, especially handling the large data, this model enhances the convergence speed and the anti-interference ability of the neural network, reduces the training time and diagnosis time by more than 50%, improving the reliability of the diagnosis from 76% to 97%.


Author(s):  
Alexey Dragunov ◽  
Eugene Saltanov ◽  
Igor Pioro ◽  
Pavel Kirillov ◽  
Romney Duffey

It is well known that the electrical-power generation is the key factor for advances in any other industries, agriculture and level of living. In general, electrical energy can be generated by: 1) non-renewable-energy sources such as coal, natural gas, oil, and nuclear; and 2) renewable-energy sources such as hydro, wind, solar, biomass, geothermal and marine. However, the main sources for electrical-energy generation are: 1) thermal - primary coal and secondary natural gas; 2) “large” hydro and 3) nuclear. The rest of the energy sources might have visible impact just in some countries. Modern advanced thermal power plants have reached very high thermal efficiencies (55–62%). In spite of that they are still the largest emitters of carbon dioxide into atmosphere. Due to that, reliable non-fossil-fuel energy generation, such as nuclear power, becomes more and more attractive. However, current Nuclear Power Plants (NPPs) are way behind by thermal efficiency (30–42%) compared to that of advanced thermal power plants. Therefore, it is important to consider various ways to enhance thermal efficiency of NPPs. The paper presents comparison of thermodynamic cycles and layouts of modern NPPs and discusses ways to improve their thermal efficiencies.


2020 ◽  
Author(s):  
Evrim Oyguc ◽  
Abdul Hayır ◽  
Resat Oyguc

Increasing energy demand urge the developing countries to consider different types of energy sources. Owing the fact that the energy production capacity of renewable energy sources is lower than a nuclear power plant, developed countries like US, France, Japan, Russia and China lead to construct nuclear power plants. These countries compensate 80% of their energy need from nuclear power plants. Further, they periodically conduct tests in order to assess the safety of the existing nuclear power plants by applying impact type loads to the structures. In this study, a sample third-generation nuclear reactor building has been selected to assess its seismic behavior and to observe the crack propagations of the prestressed outer containment. First, a 3D model has been set up using ABAQUS finite element program. Afterwards, modal analysis is conducted to determine the mode shapes. Nonlinear dynamic time history analyses are then followed using an artificial strong ground motion which is compatible with the mean design spectrum of the previously selected ground motions that are scaled to Eurocode 8 Soil type B design spectrum. Results of the conducted nonlinear dynamic analyses are considered in terms of stress distributions and crack propagations.


2018 ◽  
Vol 20 (1) ◽  
pp. 1 ◽  
Author(s):  
Sri Sudadiyo

Nowadays, pumps are being widely used in the thermal power generation including nuclear power plants. Reaktor Daya Eksperimental (RDE) is a proposed nuclear reactor concept for the type of nuclear power plant in Indonesia. This RDE has thermal power 10 MWth, and uses a feedwater pump within its steam cycle. The performance of feedwater pump depends on size and geometry of impeller model, such as the number of blades and the blade angle. The purpose of this study is to perform a preliminary design on an impeller of feedwater pump for RDE and to simulate its performance characteristics. The Fortran code is used as an aid in data calculation in order to rapidly compute the blade shape of feedwater pump impeller, particularly for a RDE case. The calculations analyses is solved by utilizing empirical correlations, which are related to size and geometry of a pump impeller model, while performance characteristics analysis is done based on velocity triangle diagram. The effect of leakage, pass through the impeller due to the required clearances between the feedwater pump impeller and the volute channel, is also considered. Comparison between the feedwater pump of HTR-10 and of RDE shows similarity in the trend line of curve shape. These characteristics curves will be very useful for the values prediction of performance of a RDE feedwater pump. Preliminary design of feedwater pump provides the size and geometry of impeller blade model with 5-blades, inlet angle 14.5 degrees, exit angle 25 degrees, inside diameter 81.3 mm, exit diameter 275.2 mm, thickness 4.7 mm, and height 14.1 mm. In addition, the optimal values of performance characteristics were obtained when flow capacity was 4.8 kg/s, fluid head was 29.1 m, shaft mechanical power was 2.64 kW, and efficiency was 52 % at rotational speed 1750 rpm.Keywords: Blade, impeller, pump, RDEDESAIN AWAL IMPELER POMPA AIR UMPAN RDE. Saat ini, pompa digunakan secara luas dalam pembangkit tenaga termal termasuk pembangkit listrik tenaga nuklir. Reaktor Daya Eksperimental (RDE) merupakan konsep reaktor nuklir yang diusulkan untuk tipe PLTN di Indonesia. RDE ini memiliki daya termal 10 MWth, dan menggunakan pompa air umpan dalam siklus uapnya. Kinerja pompa air umpan bergantung pada ukuran dan geometri model impeller, seperti jumlah sudu dan sudut sudu. Tujuan dari penelitian ini adalah untuk membuat rancangan awal impeller pompa air umpan untuk RDE dan untuk mensimulasikan karakteristik kinerjanya. Kode Fortran digunakan sebagai bantuan dalam penghitungan data untuk untuk mengkalkulasi secara cepat bentuk sudu impeller pompa air umpan, terutama pada kasus RDE. Analisis perhitungan dipecahkan menggunakan korelasi empiris yang terkait dengan ukuran dan geometri model impeller pompa, sedangkan analisis karakteristik kinerja dilakukan berdasarkan diagram segitiga kecepatan. Pengaruh bocoran, melalui impeler akibat celah yang diperlukan antara impeller pompa air umpan dan saluran volute, juga dipertimbangkan. Perbandingan antara pompa air umpan HTR-10 dan RDE menunjukkan kemiripan dalam garis tren bentuk kurva. Kurva karakteristik ini akan sangat berguna untuk perkiraan nilai kinerja pompa air umpan RDE. Desain awal pompa air umpan memberikan ukuran dan geometri model sudu impeller dengan 5-sudu, sudut masuk 14,5 derajat, sudut keluar 25 derajat, diameter dalam 81,3 mm, diameter luar 275,2 mm, ketebalan 4,7 mm, dan tinggi 14,1 mm. Selain itu, nilai optimal karakteristik kinerja diperoleh ketika kapasitas aliran 4,8 kg/s, head fluida 29,1 m, tenaga mekanik poros 2,64 kW, dan efisiensi 52 % pada kecepatan putaran 1750 rpm.Kata kunci: Sudu, impeler, pompa, RDE


Author(s):  
William D. Rezak

One of America’s best kept secrets is the success of its nuclear electric power industry. This paper presents data which support the construction and operating successes enjoyed by energy companies that operate nuclear power plants in the US. The result—the US nuclear industry is alive and well. Perhaps it’s time to start anew the building of nuclear power plants. Let’s take the wraps off the major successes achieved in the nuclear power industry. Over 20% of the electricity generated in the United States comes from nuclear power plants. An adequate, reliable supply of reasonably priced electric energy is not a consequence of an expanding economy and gross national product; it is an absolute necessity before such expansion can occur. It is hard to imagine any aspect of our business or personal lives not, in some way, dependent upon electricity. All over the world (in 34 countries) nuclear power is a low-cost, secure, safe, dependable, and environmentally friendly form of electric power generation. Nuclear plants in these countries are built in six to eight years using technology developed in the US, with good performance and safety records. This treatise addresses the success experienced by the US nuclear industry over the last 40 years, and makes the case that this reliable, cost-competitive source of electric power can help support the economic engine of the country and help prevent experiences like the recent crisis in California. Traditionally, the evaluation of electric power generation facility performance has focused on the ability of plants to produce at design capacity for high percentages of the time. Successful operation of nuclear facilities is determined by examining capacity or load factors. Load factor is the percentage of design generating capacity that a power plant actually produces over the course of a year’s operation. This paper makes the case that these operating performance indicators warrant renewed consideration of the nuclear option. Usage of electricity in the US now approaches total generating capacity. The Nuclear Regulatory Commission has pre-approved construction and operating licenses for several nuclear plant designs. State public service commissions are beginning to understand that dramatic reform is required. The economy is recovering and inflation is minimal. It’s time, once more, to turn to the safe, reliable, environmentally friendly nuclear power alternative.


Sign in / Sign up

Export Citation Format

Share Document