An Energy-Efficient Three-Dimensional Positioning Technology for Underwater Acoustic Wireless Sensor Network

2014 ◽  
Vol 989-994 ◽  
pp. 4169-4174
Author(s):  
Xiang Yu Wei ◽  
Cheng Zhu ◽  
Shi Dong Qiao

The self-positioning for the nodes is the prerequisite for wireless sensor network to work, especially considering that the deployment of underwater node changes rapidly in position. Taking the issue of energy efficiency and prolong the network lifetime into account, the energy-efficient positioning technology of the underwater acoustic sensor network is studied in this paper .Brief introduction of the current node positioning technology is concluded in this paper too. Similarly to the overlapping ideological positioning algorithm FTPL we introduce RSSI but not for the ranging. Also discuss the inadequacies of our new algorithm, and the possible improvements. Simulation results show that the improved algorithm has good improvement in both the accuracy and the energy efficiency.

2011 ◽  
Vol 268-270 ◽  
pp. 440-445
Author(s):  
Wang Lan Tian ◽  
Hong Yan Lei

In this paper, a reasoning model is proposed for energy efficiency task allocation in wireless sensor network. The presented energy efficient contract net protocol is used to implement the negotiation process. Multi-issue scoring function can evaluate the offer with multi-issues in a quantifiable way. An energy threshold is brought to decrease communications which will turn out to decrease nodes’ energy consumption. And the usage of energy threshold also promote the nodes with high level energy have more chance to implement tasks. The simulation results show that the allocation model has outstanding performance maintaining a fair energy balance and is energy efficient in negotiation process.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Santosh V. Purkar ◽  
R. S. Deshpande

Heterogeneous wireless sensor network (HWSN) fulfills the requirements of researchers in the design of real life application to resolve the issues of unattended problem. But, the main constraint faced by researchers is the energy source available with sensor nodes. To prolong the life of sensor nodes and thus HWSN, it is necessary to design energy efficient operational schemes. One of the most suitable approaches to enhance energy efficiency is the clustering scheme, which enhances the performance parameters of WSN. A novel solution proposed in this article is to design an energy efficient clustering protocol for HWSN, to enhance performance parameters by EECPEP-HWSN. The proposed protocol is designed with three level nodes namely normal, advanced, and super, respectively. In the clustering process, for selection of cluster head we consider different parameters available with sensor nodes at run time that is, initial energy, hop count, and residual energy. This protocol enhances the energy efficiency of HWSN and hence improves energy remaining in the network, stability, lifetime, and hence throughput. It has been found that the proposed protocol outperforms than existing well-known LEACH, DEEC, and SEP with about 188, 150, and 141 percent respectively.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Lin Xiao ◽  
Fahui Wu ◽  
Dingcheng Yang ◽  
Tiankui Zhang ◽  
Xiaoya Zhu

The power consumption and energy efficiency of wireless sensor network are the significant problems in Internet of Things network. In this paper, we consider the network topology optimization based on complex network theory to solve the energy efficiency problem of WSN. We propose the energy efficient model of WSN according to the basic principle of small world from complex networks. Small world network has clustering features that are similar to that of the rules of the network but also has similarity to random networks of small average path length. It can be utilized to optimize the energy efficiency of the whole network. Optimal number of multiple sink nodes of the WSN topology is proposed for optimizing energy efficiency. Then, the hierarchical clustering analysis is applied to implement this clustering of the sensor nodes and pick up the sink nodes from the sensor nodes as the clustering head. Meanwhile, the update method is proposed to determine the sink node when the death of certain sink node happened which can cause the paralysis of network. Simulation results verify the energy efficiency of the proposed model and validate the updating of the sink nodes to ensure the normal operation of the WSN.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Noor Zaman ◽  
Low Tang Jung ◽  
Muhammad Mehboob Yasin

Wireless Sensor Network (WSN) is known to be a highly resource constrained class of network where energy consumption is one of the prime concerns. In this research, a cross layer design methodology was adopted to design an energy efficient routing protocol entitled “Position Responsive Routing Protocol” (PRRP). PRRP is designed to minimize energy consumed in each node by (1) reducing the amount of time in which a sensor node is in an idle listening state and (2) reducing the average communication distance over the network. The performance of the proposed PRRP was critically evaluated in the context of network lifetime, throughput, and energy consumption of the network per individual basis and per data packet basis. The research results were analyzed and benchmarked against the well-known LEACH and CELRP protocols. The outcomes show a significant improvement in the WSN in terms of energy efficiency and the overall performance of WSN.


Sign in / Sign up

Export Citation Format

Share Document