Novel Behavior in Smart Polymeric Materials: Stress Memory and its Potential Applications

2016 ◽  
Vol 97 ◽  
pp. 93-99
Author(s):  
Jin Lian Hu ◽  
Harishkumar Narayana

Materials, structures and systems, responsive to an external stimulus are smart and adaptive to our human demands. Among smart materials, polymers with shape memory effect are at the forefront of research leading to comprehensive publications and wide applications. In this paper, we extend the concept of shape memory polymers to stress memory ones, which have been discovered recently. Like shape memory, stress memory represents a phenomenon where the stress in a polymer can be programmed, stored and retrieved reversibly with an external stimulus such as temperature and magnetic field. Stress memory may be mistaken as the recovery stress which was studied quite broadly. Our further investigation also reveals that stress memory is quite different from recovery stress containing multi-components including elastic and viscoelastic forces in addition to possible memory stress. Stress memory could be used into applications such as sensors, pressure garments, massage devices, electronic skins and artificial muscles. The current revelation of stress memory potentials is emanated from an authentic application of memory fibres, films, and foams in the smart compression devices for the management of chronic and therapeutic disorders.

2020 ◽  
pp. 089270572093077
Author(s):  
Ammar Boudjellal ◽  
Djalal Trache ◽  
Kamel Khimeche ◽  
Said Lotfi Hafsaoui ◽  
Ahmed Bougamra ◽  
...  

Shape-memory polymers (SMPs) and their composites (SMPCs), as a kind of smart materials, can respond to particular external stimulus and recover the original shape. They present outstanding features encompassing shape-memory effect, deformability, biocompatibility, variable stiffness, lightweight, and so on. They have attracted considerable research interest in recent years. Several stimulation methods to actuate the deformation of SMPs and SMPCs, of which the thermal stimulation is the common one, and many types of reinforcements have been developed over the past few years. It is revealed that the SMPC thermal and mechanical properties can be improved by introducing a number of reinforcements. Therefore, to well investigate the SMPC characteristics upon exposure to a specific external stimulus, a deep knowledge and understanding of the potential reinforcements as well as the available stimulation methods are crucial. In this review, reinforcements such as fibers, ceramics, and nanocarbons are first concisely presented. Next, numerous novel stimulation methods used to trigger the memory effect of the SMPCs are introduced, where the mechanisms of electrical, magnetic, thermal, light, and solution stimulations are briefly discussed. Finally, considering the increase of the number of interesting reinforcements as well as the efficient stimulation methods, SMPCs are expected to have great potential applications in different fields.


Molecules ◽  
2020 ◽  
Vol 25 (18) ◽  
pp. 4246 ◽  
Author(s):  
Yujie Chen ◽  
Chi Chen ◽  
Hafeez Ur Rehman ◽  
Xu Zheng ◽  
Hua Li ◽  
...  

Shape-memory materials are smart materials that can remember an original shape and return to their unique state from a deformed secondary shape in the presence of an appropriate stimulus. This property allows these materials to be used as shape-memory artificial muscles, which form a subclass of artificial muscles. The shape-memory artificial muscles are fabricated from shape-memory polymers (SMPs) by twist insertion, shape fixation via Tm or Tg, or by liquid crystal elastomers (LCEs). The prepared SMP artificial muscles can be used in a wide range of applications, from biomimetic and soft robotics to actuators, because they can be operated without sophisticated linkage design and can achieve complex final shapes. Recently, significant achievements have been made in fabrication, modelling, and manipulation of SMP-based artificial muscles. This paper presents a review of the recent progress in shape-memory polymer-based artificial muscles. Here we focus on the mechanisms of SMPs, applications of SMPs as artificial muscles, and the challenges they face concerning actuation. While shape-memory behavior has been demonstrated in several stimulated environments, our focus is on thermal-, photo-, and electrical-actuated SMP artificial muscles.


2020 ◽  
Vol 64 (4) ◽  
pp. 425-442
Author(s):  
Mathew J. Haskew ◽  
John G. Hardy

Shape-memory polymers (SMPs) enable the production of stimuli-responsive polymer-based materials with the ability to undergo a large recoverable deformation upon the application of an external stimulus. Academic and industrial research interest in the shape-memory effects (SMEs) of these SMP-based materials is growing for task-specific applications. This mini-review covers interesting aspects of SMP-based materials, their properties, how they may be investigated and highlights examples of the potential applications of these materials.


MRS Bulletin ◽  
2009 ◽  
Vol 34 (11) ◽  
pp. 848-855 ◽  
Author(s):  
Jinsong Leng ◽  
Haibao Lu ◽  
Yanju Liu ◽  
Wei Min Huang ◽  
Shanyi Du

AbstractShape-memory polymers (SMPs) offer a number of potential technical advantages that surpass other shape-memory materials such as shape-memory metallic alloys and shape-memory ceramics. The advantages include high recoverable strain (up to 400%), low density, ease of processing and the ability to tailor the recovery temperature, programmable and controllable recovery behavior, and more importantly, low cost. This article presents the state-of-the-art regarding SMPs. First, the architecture, type, and main properties of the traditional and recently developed SMPs are introduced. Second, structural and multifunctional SMP composites are summarized and discussed. These composites greatly enhance the performance of the SMPs and widen their potential applications. Finally, current applications of SMP materials in aerospace engineering, textiles, automobiles, and medicine are presented.


2010 ◽  
Vol 123-125 ◽  
pp. 943-946 ◽  
Author(s):  
Zheng Fa Li ◽  
Zheng Dao Wang

Shape memory polymers own many advantages compared with traditional shape memory alloys or ceramics. In order to improve their shape recovery stress and realize a stable recovery response during the deployable process, the structure of SMP sandwich beam composed of two metallic skin and one SMP core is considered. The recovery behaviors of pure SMP and SMP beams reinforced by one-layer metallic skin are also discussed for comparison. The results confirm that the deployable properties of SMP matrix can be significantly improved by using sandwich structure.


2018 ◽  
Vol 6 (24) ◽  
pp. 11479-11487 ◽  
Author(s):  
Ang Li ◽  
Jizhou Fan ◽  
Guoqiang Li

Engineering applications of current thermoset shape memory polymers are limited by three critical issues: demanding fabrication conditions (from 70 to 300 °C temperatures for hours or days), lack of reprocessability or recyclability, and low recovery stress and energy output.


Author(s):  
L. Santo ◽  
L. Iorio ◽  
G. M. Tedde ◽  
F. Quadrini

Shape Memory Polymer Composites (SMPCs) are smart materials showing the structural properties of long-fiber polymer-matrix together with the functional behavior of shape memory polymers. In this study, SM carbon fiber reinforced (CFR) composites have been produced by using a SM interlayer between two CFR prepregs. Their SM properties have been evaluated in comparison with traditional structural CFR composites without the SM interlayer by using an especially designed test. Active and frozen forces are measured during a thermo-mechanical cycle in the three-point bending configuration. Experimental results show that SMPCs are able to fix a temporary deformed shape by freezing high stresses.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Liangliang Cao ◽  
Liwei Wang ◽  
Cihui Zhou ◽  
Xin Hu ◽  
Liang Fang ◽  
...  

Shape-memory polymers (SMPs) are one kind of smart polymers and can change their shapes in a predefined manner under stimuli. Shape-memory effect (SME) is not a unique ability for specific polymeric materials but results from the combination of a tailored shape-memory creation procedure (SMCP) and suitable molecular architecture that consists of netpoints and switching domains. In the last decade, the trend toward the exploration of SMPs to recover structures at micro-/nanoscale occurs with the development of SMPs. Here, the progress of the exploration in micro-/nanoscale structures, particles, and fibers of SMPs is reviewed. The preparation method, SMCP, characterization of SME, and applications of surface structures, free-standing particles, and fibers of SMPs at micro-/nanoscale are summarized.


2020 ◽  
Vol 26 (9) ◽  
pp. 1593-1602
Author(s):  
Jorge Villacres ◽  
David Nobes ◽  
Cagri Ayranci

Purpose The purpose of this paper is to study the shape memory properties of SMP samples produced through a MEAM process. Fused deposition modeling or, as it will be referred to in this paper, material extrusion additive manufacturing (MEAM) is a technique in which polymeric materials are extruded though a nozzle creating parts via accumulation and joining of different layers. These layers are fused together to build three-dimensional objects. Shape memory polymers (SMP) are stimulus responsive materials, which have the ability to recover their pre-programmed form after being exposed to a large strain. To induce its shape memory recovery movement, an external stimulus such as heat needs to be applied. Design/methodology/approach This project investigates and characterizes the influence of print orientation and infill percentage on shape recovery properties. The analyzed shape recovery properties are shape recovery force, shape recovery speed and time elapsed before activation. To determine whether the analyzed factors produce a significant variation on shape recovery properties, t-tests were performed with a 95% confidence factor between each analyzed level. Findings Results proved that print angle and infill percentage do have a significant impact on recovery properties of the manufactured specimens. Originality/value The manufacturing of SMP objects through a MEAM process has a vast potential for different applications; however, the shape recovery properties of these objects need to be analyzed before any practical use can be developed. These have not been studied as a function of print parameters, which is the focus of this study.


Sign in / Sign up

Export Citation Format

Share Document