Numerical Simulation of Natural Convection in a Mold

2010 ◽  
Vol 297-301 ◽  
pp. 456-461
Author(s):  
Mohsen Pirmohammadi ◽  
Ghanbar Ali Sheikhzadeh ◽  
Majid Ghassemi ◽  
Mohsen Hamedi

Numerical study of natural convection heat transfer inside a differentially heated square enclosure with adiabatic horizontal walls and vertical isothermal walls is investigated. Two insulated ribs are symmetrically located on horizontal walls. The governing non-linear equations are solved in a two-dimensional domain using a control volume method and the SIMPLER algorithm for the velocity–pressure coupling is employed. The results will be presented in forms of streamlines, isotherms and Nusselt number for Rayleigh number 106. It is shown that for small rib height the isotherms indicate the laminar boundary regime with high temperature gradient near the bottom of the hot surface and the top of cold one. However, as rib height increases this boundary layer is vanished. Also it is found that as the length and height of the ribs increase the mean Nusselt number decreases.

1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


2020 ◽  
Vol 330 ◽  
pp. 01029
Author(s):  
Mohamed Amine MEDEBBER ◽  
Abderrahmane AISSA ◽  
Belkacem OULD SAID ◽  
Noureddine RETIEL ◽  
Mohammed EL GANAOUI

The interaction of natural convection with thermal radiation of black surfaces in a cylindrical enclosure filled with air has been numerically investigated. The steady-state continuity, Navier-Stokes and energy equations were discretized using the control volume method and solved numerically via the SIMPLER algorithm. Effects of Rayleigh number (Ra), wall emissivity (εp) and height ratio parameter (X) are studied. The result shows that surface radiation significantly altered the temperature distribution and the flow patterns, especially at higher Rayleigh numbers. The total average Nusselt number has also been discussed for valuating heat transfer through the enclosure.


2020 ◽  
Vol 847 ◽  
pp. 114-119
Author(s):  
Barbie Leena Barhoi ◽  
Ramesh Chandra Borah ◽  
Sandeep Singh

The present study relates to numerical investigation of natural convection heat transfer in a nanofluid filled square enclosure. One side of the enclosure is maintained at high temperature and the other side at a low temperature; while the top and bottom sides are adiabatic. The commercial CFD software ANSYS-FLUENT© was used to solve this numerical problem with the governing differential equations discretized by a control volume approach. nanofluids of Cu-water, Al2O3-water and TiO2-water have been simulated for a range of Rayleigh numbers and volume fractions. The results were obtained in the form of streamlines and isotherms. Interpretations of the results are done based on heat transfer rates, volume fraction, Rayleigh number and Nusselt number. It is to be noted that addition of nanoparticles enhances the heat transfer rate. It is also observed that the Nusselt number is highly affected by volume fraction and Rayleigh number.


Author(s):  
Bin Li ◽  
Chan Byon

Numerical study is carried out on natural convection heat transfer from three radial heat sinks subject to the influence of orientation. A finite volume method (FVM) numerical model was used to analyze the thermal performance of the radial heat sinks under upward, sideward and downward orientations. The effects of orientation with respect to gravity, fin number (15–30), the thickness of concentric ring (0.15–0.60) and Elenbaas number (15–55) on Nusselt number are investigated. Numerical results indicate that radiation is non-negligible in this study due to its high influence on thermal performance. The Nusselt number is relatively insensitive to the smaller ring thickness. The sideward facing orientation yields the worst thermal performance despite fin number changing. It is found that the thermal performance of heat sinks in upward and downward orientations depend on the number of fins significantly.


2020 ◽  
Vol 12 (4) ◽  
pp. 499-515
Author(s):  
M. Y. Arafat ◽  
F. Faisal

A numerical study has been conducted to investigate the transport mechanism of natural convection in a C-shaped enclosure filled with water-Al2O3 nanofluid for various pertinent parameters. The effects of the volume fraction of the Al2O3 nanoparticles, Rayleigh number, and radius of inserted cylindrical pins on the temperature, velocity, heat flux profiles and average Nusselt number have been investigated. General correlations for the effective thermal conductivity and viscosity of nanofluids are used for this analysis. The governing mass, momentum and energy equations are solved numerically with the finite volume method using the SIMPLER algorithm. The results show that addition of nanoparticle improves the heat transfer performance. Insertion of cylindrical pins of lower radius increases the average Nusselt number irrespective of Rayleigh number. But anomaly has been observed while pins of higher radius are inserted due to enormous disturbance in the fluid.


2016 ◽  
Vol 831 ◽  
pp. 83-91
Author(s):  
Lahoucine Belarche ◽  
Btissam Abourida

The three-dimensional numerical study of natural convection in a cubical enclosure, discretely heated, was carried out in this study. Two heating square sections, similar to the integrated electronic components, are placed on the vertical wall of the enclosure. The imposed heating fluxes vary sinusoidally with time, in phase and in opposition of phase. The temperature of the opposite vertical wall is maintained at a cold uniform temperature and the other walls are adiabatic. The governing equations are solved using Control volume method by SIMPLEC algorithm. The sections dimension ε = D / H and the Rayleigh number Ra were fixed respectively at 0,35 and 106. The average heat transfer and the maximum temperature on the active portions will be examined for a given set of the governing parameters, namely the amplitude of the variable temperatures a and their period τp. The obtained results show significant changes in terms of heat transfer, by proper choice of the heating mode and the governing parameters.


2019 ◽  
Vol 392 ◽  
pp. 123-137 ◽  
Author(s):  
Mohamed A. Medebber ◽  
Abderrahmane Aissa ◽  
Mohamed El Amine Slimani ◽  
Noureddine Retiel

The two dimensional study of natural convection in vertical cylindrical annular enclosure filled with Cu-water nanofluid under magnetic fields is numerically analyzed. The vertical walls are maintained at different uniform hot and cold temperatures, THand TC, respectively. The top and bottom walls of the enclosure are thermally insulated. The governing equations are solved numerically by using a finite volume method. The coupling between the continuity and momentum equations is effected using the SIMPLER algorithm. Numerical analysis has been carried out for a wide range of Rayleigh number (103≤Ra≤106), Hartmann number (1 ≤Ha≤100) and nanoparticles volume fraction (0 ≤φ≤0.08). The influence of theses physical parameters on the streamlines, isotherms and average Nusselt has been numerically investigated.


2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
M. Goodarzi ◽  
M. R. Safaei ◽  
A. Karimipour ◽  
K. Hooman ◽  
M. Dahari ◽  
...  

Different numerical methods have been implemented to simulate internal natural convection heat transfer and also to identify the most accurate and efficient one. A laterally heated square enclosure, filled with air, was studied. A FORTRAN code based on the lattice Boltzmann method (LBM) was developed for this purpose. The finite difference method was applied to discretize the LBM equations. Furthermore, for comparison purpose, the commercially available CFD package FLUENT, which uses finite volume Method (FVM), was also used to simulate the same problem. Different discretization schemes, being the first order upwind, second order upwind, power law, and QUICK, were used with the finite volume solver where the SIMPLE and SIMPLEC algorithms linked the velocity-pressure terms. The results were also compared with existing experimental and numerical data. It was observed that the finite volume method requires less CPU usage time and yields more accurate results compared to the LBM. It has been noted that the 1st order upwind/SIMPLEC combination converges comparatively quickly with a very high accuracy especially at the boundaries. Interestingly, all variants of FVM discretization/pressure-velocity linking methods lead to almost the same number of iterations to converge but higher-order schemes ask for longer iterations.


Author(s):  
G. A. Sheikhzadeh ◽  
M. Pirmohammadi ◽  
M. Ghassemi

Numerical study natural convection heat transfer inside a differentially heated square cavity with adiabatic horizontal walls and vertical isothermal walls is investigated. Two perfectly conductive thin fins are attached to the isothermal walls. To solve the governing differential mass, momentum and energy equations a finite volume code based on Pantenkar’s simpler method is developed and utilized. The results are presented in form of streamlines, isotherms as well as Nusselt number for Rayleigh number ranging from 104 up to 107. It is shown that the mean Nusselt number is affected by the position of the fins and length of the fins as well as the Rayleigh number. It is also observed that maximum Nusselt number occurs about the middle of the enclosure where Lf is grater the 0.5. In addition the Nusselt number stays constant and does not varies with width of the cavity (lf) when Lf is equal to 0.5 and Rayleigh number is equal to 104 and 107 as well as when Lf is equal to 0.6 and low Rayleigh numbers.


Author(s):  
Tahar Tayebi ◽  
Ali J. Chamkha

Abstract In this paper, steady natural convective heat transfer and flow characteristics of Al2O3-Cu/water hybrid nanofluid filled square enclosure in the presence of magnetic field has been investigated numerically. The enclosure is equipped with a wavy circular conductive cylinder. The natural convection in the cavity is induced by a temperature difference between the vertical left hot wall and the other right cold wall. The steady 2-D equations of laminar natural convection problem for Newtonian and incompressible mixture are discretized using the finite volume method. The effective thermal conductivity and viscosity of the hybrid nanofluid are calculated using Corcione correlations taking into consideration the Brownian motion of the nanoparticles. A numerical parametric investigation is carried out for different values of the nanoparticles volumic concentration, Hartmann number, Rayleigh number, and the ratio of fluid to solid thermal conductivities. According to the results, the corrugated conductive block plays an important role in controlling the convective flow characteristic and the heat transfer rate within the system.


Sign in / Sign up

Export Citation Format

Share Document