Natural Convection in a Nano-Fluid Filled Square Enclosure

2020 ◽  
Vol 847 ◽  
pp. 114-119
Author(s):  
Barbie Leena Barhoi ◽  
Ramesh Chandra Borah ◽  
Sandeep Singh

The present study relates to numerical investigation of natural convection heat transfer in a nanofluid filled square enclosure. One side of the enclosure is maintained at high temperature and the other side at a low temperature; while the top and bottom sides are adiabatic. The commercial CFD software ANSYS-FLUENT© was used to solve this numerical problem with the governing differential equations discretized by a control volume approach. nanofluids of Cu-water, Al2O3-water and TiO2-water have been simulated for a range of Rayleigh numbers and volume fractions. The results were obtained in the form of streamlines and isotherms. Interpretations of the results are done based on heat transfer rates, volume fraction, Rayleigh number and Nusselt number. It is to be noted that addition of nanoparticles enhances the heat transfer rate. It is also observed that the Nusselt number is highly affected by volume fraction and Rayleigh number.

2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


2020 ◽  
Vol 12 (4) ◽  
pp. 499-515
Author(s):  
M. Y. Arafat ◽  
F. Faisal

A numerical study has been conducted to investigate the transport mechanism of natural convection in a C-shaped enclosure filled with water-Al2O3 nanofluid for various pertinent parameters. The effects of the volume fraction of the Al2O3 nanoparticles, Rayleigh number, and radius of inserted cylindrical pins on the temperature, velocity, heat flux profiles and average Nusselt number have been investigated. General correlations for the effective thermal conductivity and viscosity of nanofluids are used for this analysis. The governing mass, momentum and energy equations are solved numerically with the finite volume method using the SIMPLER algorithm. The results show that addition of nanoparticle improves the heat transfer performance. Insertion of cylindrical pins of lower radius increases the average Nusselt number irrespective of Rayleigh number. But anomaly has been observed while pins of higher radius are inserted due to enormous disturbance in the fluid.


1970 ◽  
Vol 39 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Sumon Saha ◽  
Noman Hasan ◽  
Chowdhury Md Feroz

A numerical study has been carried out for laminar natural convection heat transfer within a two-dimensional modified square enclosure having a triangular roof. The vertical sidewalls are differentially heated considering a constant flux heat source strip is flush mounted with the left wall. The opposite wall is considered isothermal having a temperature of the surrounding fluid. The rest of the walls are adiabatic. Air is considered as the fluid inside the enclosure. The solution has been carried out on the basis of finite element analysis by a non-linear parametric solver to examine the heat transfer and fluid flow characteristics. Different heights of the triangular roof have been considered for the present analysis. Fluid flow fields and isotherm patterns and the average Nusselt number are presented for the Rayleigh numbers ranging from 103 to 106 in order to show the effects of these governing parameters. The average Nusselt number computed for the case of isoflux heating is also compared with the case of isothermal heating as available in the literature. The outcome of the present investigation shows that the convective phenomenon is greatly influenced by the inclined roof height. Keywords: Natural convection, triangular roof, Rayleigh number, isoflux heating. Doi:10.3329/jme.v39i1.1826 Journal of Mechanical Engineering, vol. ME39, No. 1, June 2008 1-7


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


2019 ◽  
Vol 30 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Abdellaziz Yahiaoui ◽  
Mahfoud Djezzar ◽  
Hassane Naji

This paper performs a numerical analysis of the natural convection within two-dimensional enclosures (square enclosure and enclosures with curved walls) full of a H2O-Cu nanofluid. While their vertical walls are isothermal with a cold temperature [Formula: see text], the horizontal top wall is adiabatic and the bottom wall is kept at a sinusoidal hot temperature. The working fluid is assumed to be Newtonian and incompressible. Three values of the Rayleigh number were considered, viz., 103, 104, 105, the Prandtl number is fixed at 6.2, and the volume fraction [Formula: see text] is taken equal to 0% (pure water), 10% and 20%. The numerical simulation is achieved using a 2D-in-house CFD code based on the governing equations formulated in bipolar coordinates and translated algebraically via the finite volume method. Numerical results are presented in terms of streamlines, isotherms and local and average Nusselt numbers. These show that the heat transfer rate increases with both the volume fraction and the Rayleigh number, and that the average number of Nusselt characterizing the heat transfer raises with the nanoparticles volume fraction.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Mohamed Sannad ◽  
Abourida Btissam ◽  
Belarche Lahoucine

This article consists of a numerical study of natural convection heat transfer in three-dimensional cavity filled with nanofluids. This configuration is heated by a partition maintained at a hot constant and uniform temperature TH. The right and left vertical walls are kept at a cold temperature TC while the rest is adiabatic. The fluid flow and heat transfer in the cavity are studied for different sets of the governing parameters, namely, the nanofluid type, the Rayleigh number Ra = 103, 104, 105, and 106, and the volume fraction Ф varying between Ф = 0 and 0.1. The obtained results show a positive effect of the volume fraction and the Rayleigh number on the heat transfer improvement. The analysis of the results related to the heat transfer shows that the copper-based nanofluid guarantees the best thermal transfer. In addition, the increase of the heating section size and Ra leads to an increased amount of heat. Similarly, increasing the volume fraction improves the intensification of the flow and increases the heat exchange.


2019 ◽  
Vol 30 (12) ◽  
pp. 1950105 ◽  
Author(s):  
Yuan Ma ◽  
Zhigang Yang

Lattice Boltzmann method (LBM) was used to simulate two-dimensional MHD Al2O3/water nanofluid flow and heat transfer in an enclosure with a semicircular wall and a triangular heating obstacle. The effects of nanoparticle volume fraction ([Formula: see text]), Rayleigh number [Formula: see text], Hartmann number [Formula: see text] and heating obstacle position (Cases 1–7) on flow pattern, temperature distribution and rate of heat transfer were investigated. The results show that with the enhancing Rayleigh number, the increasing nanoparticle volume fraction and the reducing Hartmann number, an enhancement in the average Nusselt number and the heat transfer appeared. The effect of Ha on the average Nu increases by increasing the Ra. It can also be found that the action of changing the heating obstacle position on the convection heat transfer is more important than that on the conduction heat transfer. The higher obstacle position in Cases 6 and 7 leads to the small value of the average Nusselt number. Moreover, the effect of Ha on average Nu in Case 1 at [Formula: see text] is more significant than other cases because the flow pattern in Case 1 is changed as increasing Ha.


Author(s):  
Jong K. Lee ◽  
Seung D. Lee ◽  
Kune Y. Suh

During a severe accident, the reactor core may melt and be relocated to the lower plenum to form a hemispherical pool. If there is no effective cooling mechanism, the core debris may heat up and the molten pool run into natural convection. Natural convection heat transfer was examined in SIGMA RP (Simulant Internal Gravitated Material Apparatus Rectangular Pool). The SIGMA RP apparatus comprises a rectangular test section, heat exchanger, cartridge heaters, cooling jackets, thermocouples and a data acquisition system. The internal heater heating method was used to simulate uniform heat source which is related to the modified Rayleigh number Ra′. The test procedure started with water, the working fluid, filling in the test section. There were two boundary conditions: one dealt with both walls being cooled isothermally, while the other had to with only the upper wall being cooled isothermally. The heat exchanger was utilized to maintain the isothermal boundary condition. Four side walls were surrounded by the insulating material to minimize heat loss. Tests were carried out at 1011 < Ra′ < 1013. The SIGMA RP tests with an appropriate cartridge heater arrangement showed excellent uniform heat generation in the pool. The steady state was defined such that the temperature fluctuation stayed within ±0.2 K over a time period of 5,000 s. The conductive heat transfer was dominant below the critical Rayleigh number Ra′c, whereas the convective heat transfer picked up above Ra′c. In the top and bottom boundary cooling condition, the upward Nusselt number Nuup was greater than the downward Nusselt number Nudn. In particular, the discrepancy between Nuup and Nudn widened with Ra′. The Nuup to Nudn ratio was varied from 7.75 to 16.77 given 1.45×1012 < Ra′ < 9.59×1013. On the other hand, Nuup was increased in absence of downward heat transfer for the case of top cooling. The current rectangular pool testing will be extended to include circular and spherical pools.


Sign in / Sign up

Export Citation Format

Share Document