scholarly journals 2D Flow in a Wall-Bounded Porous Medium

2013 ◽  
Vol 334-335 ◽  
pp. 359-364 ◽  
Author(s):  
P.J.S.A. Ferreira de Sousa ◽  
Isabel Malico ◽  
Gérson Fernandes

A compact finite differences method is used to calculate two-dimensional viscous flows through complex geometries. The immersed boundaries are set through body forces that allow for the imposition of boundary conditions that coincide with the computational grid. Two different flow configurations are simulated. First, the flow through a row of cylinders with square cross-sections is calculated and used as a validation study. The computed average drag coefficient and Strouhal number are compared to data available in the literature, showing a good agreement between the results. The second flow configuration analyzed is the flow through a porous matrix composed of equal size staggered square cylinders. Flow visualization results are shown and various flow regimes identified. Different inlet boundary conditions are compared. The drag coefficient is larger when a uniform inlet velocity is prescribed and the variability between cylinders is lower.

2012 ◽  
Vol 326-328 ◽  
pp. 725-730 ◽  
Author(s):  
P.J.S.A. Ferreira de Sousa ◽  
Isabel Malico ◽  
Gérson Fernandes

This paper is centred on a compact finite differences method for the calculation of two-dimensional viscous flows through complex geometries. The immersed boundaries are set through body forces that allow for the imposition of boundary conditions that coincide with the computational grid. Two different flow configurations are simulated. First, the flow past a cylinder with square cross-section inside a plane channel is calculated. The computed average drag coefficient and Strouhal number are compared to data available in the literature. The agreement between the results is good. The second flow configuration analyzed is the flow through a porous matrix composed of equal size staggered square cylinders. Flow visualization results are shown. The work presented in this paper illustrates the potential of the immersed boundary method in general and of this implementation in particular to simulate the flow through porous matrices.


2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


2018 ◽  
Vol 13 (3) ◽  
pp. 1-10 ◽  
Author(s):  
I.Sh. Nasibullayev ◽  
E.Sh Nasibullaeva ◽  
O.V. Darintsev

The flow of a liquid through a tube deformed by a piezoelectric cell under a harmonic law is studied in this paper. Linear deformations are compared for the Dirichlet and Neumann boundary conditions on the contact surface of the tube and piezoelectric element. The flow of fluid through a deformed channel for two flow regimes is investigated: in a tube with one closed end due to deformation of the tube; for a tube with two open ends due to deformation of the tube and the differential pressure applied to the channel. The flow rate of the liquid is calculated as a function of the frequency of the deformations, the pressure drop and the physical parameters of the liquid.


Dynamics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 9-17
Author(s):  
Andrea Natale Impiombato ◽  
Giorgio La Civita ◽  
Francesco Orlandi ◽  
Flavia Schwarz Franceschini Zinani ◽  
Luiz Alberto Oliveira Rocha ◽  
...  

As it is known, the Womersley function models velocity as a function of radius and time. It has been widely used to simulate the pulsatile blood flow through circular ducts. In this context, the present study is focused on the introduction of a simple function as an approximation of the Womersley function in order to evaluate its accuracy. This approximation consists of a simple quadratic function, suitable to be implemented in most commercial and non-commercial computational fluid dynamics codes, without the aid of external mathematical libraries. The Womersley function and the new function have been implemented here as boundary conditions in OpenFOAM ESI software (v.1906). The discrepancy between the obtained results proved to be within 0.7%, which fully validates the calculation approach implemented here. This approach is valid when a simplified analysis of the system is pointed out, in which flow reversals are not contemplated.


1992 ◽  
Vol 70 (9) ◽  
pp. 696-705 ◽  
Author(s):  
A-K. Hamid ◽  
I. R. Ciric ◽  
M. Hamid

The problem of plane electromagnetic wave scattering by two concentrically layered dielectric spheres is investigated analytically using the modal expansion method. Two different solutions to this problem are obtained. In the first solution the boundary conditions are satisfied simultaneously at all spherical interfaces, while in the second solution an iterative approach is used and the boundary conditions are satisfied successively for each iteration. To impose the boundary conditions at the outer surface of the spheres, the translation addition theorem of the spherical vector wave functions is employed to express the scattered fields by one sphere in the coordiante system of the other sphere. Numerical results for the bistatic and back-scattering cross sections are presented graphically for various sphere sizes, layer thicknesses and permittivities, and angles of incidence.


A pure water jet at subsonic speed provides an opportunity for application in cutting soft material with the advantage of not contaminating the workpiece. Inside the nozzle, water is flowing through various cross sections, which lead to pressure drop and loss of energy. This requires a nozzle with a design that causes minimum pressure drop. In this work, Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) were used to analyse the flow through five different nozzles. For each nozzle, the pressures of 10 MPa, 20 MPa and 30 MPa were applies at the inlet. For the inlet pressure of 10 MPa, the highest outlet velocity us 136.12 m/s at the pressure of 9.261 MPa. The impact pressure at stand distance of 0.5 mm and 1.0 mm were 8.26 MPa and 8.02 MPa, respectively. For this nozzle, the Factor of Safety for 10 MPa, 20 MPa and 30 MPa were 6.4, 3.2 and 2.961, respectively. The findings are relevant to the development of pure water jet cutting machine


Sign in / Sign up

Export Citation Format

Share Document