Effects of High Reynolds Number Impinging Jet on the Heat Conduction in Work-Pieces Irradiated by a Moving Heat Source

2014 ◽  
Vol 354 ◽  
pp. 189-194
Author(s):  
Oronzio Manca ◽  
Sergio Nardini ◽  
D. Ricci ◽  
S. Tamburrino

A three dimensional conductive field is analyzed and solved numerically by means of a commercial code. The investigated work-pieces are made up of a simple brick-type solid. A laser source with combined donut-Gaussian distributions is considered moving with a constant velocity along motion direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while finite width (2ly) and thickness (s) are considered. Thermal properties are considered temperature dependent and the materials are considered isotropic. Surface heat losses toward the ambient are taken into account. Several Reynolds numbers of the impinging jet, Biot and Peclet numbers are considered with negligible radiative heat losses. Results are presented in terms of temperatures field and profile to evaluate the effect of impinging jet.

2011 ◽  
Vol 312-315 ◽  
pp. 924-928 ◽  
Author(s):  
N. Bianco ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Salvatore Tamburrino

A three dimensional conductive field is analyzed and solved by means of the COMSOL Multiphysics code. The investigated work-pieces are made up of a simple brick-type solid. A laser source with combined donut-Gaussian distributions is considered moving with a constant velocity along motion direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while finite width (2ly) and thickness (s) are considered. Thermal properties are considered temperature dependent and the materials are considered isotropic. Surface heat losses toward the ambient are taken into account. Several convective heat flux values on the upper surface, with corresponding Biot numbers, and Peclet numbers are considered with negligible radiative heat losses.Results are presented in terms of profile temperatures to evaluate the effect of impinging jet.


2010 ◽  
Vol 297-301 ◽  
pp. 1445-1450 ◽  
Author(s):  
Nicola Bianco ◽  
Oronzio Manca ◽  
Sergio Nardini ◽  
Salvatore Tamburrino

In this paper a three dimensional conductive field is analyzed and solved by means of the COMSOL Multiphysics code. The investigated work-pieces are made up of a simple brick-type solid. A laser source with combined donut-Gaussian distributions is considered moving with a constant velocity along motion direction. The solid dimension along the motion direction is assumed to be infinite or semi-infinite, while finite width (2ly) and thickness (s) are considered. Thermal properties are considered temperature dependent and the materials are considered isotropic. Surface heat losses toward the ambient are taken into account. Results are presented in terms of profile temperature to evaluate the effect of solid thickness.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1999 ◽  
Vol 121 (1) ◽  
pp. 182-186 ◽  
Author(s):  
O. Manca ◽  
B. Morrone ◽  
S. Nardini

A three-dimensional heat transfer model has been developed to obtain the conductive thermal field inside a brick-type solid under a moving heat source with different beam profiles. The problem in quasi-steady state has been approximated by neglecting the axial diffusion component; thus, for Peclet numbers greater than 5, the elliptic differential equation becomes a parabolic one along the motion direction. The dependence of the solution on the radiative and convective heat losses has been highlighted. Thermal fields are strongly dependent on different spot shapes and on the impinging jet; this situation allows control of the parameters involved in the technological process.


1978 ◽  
Vol 88 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A. E. Perry ◽  
T. T. Lim

By applying small lateral oscillations to a glass tube from which smoke was issuing, perfectly periodic coflowing jets and wake structures were produced at Reynolds numbers of order 300-1000. These structures remained coherent over long streamwise distances and appeared to be perfectly frozen when viewed under stroboscopic light which was synchronized with the disturbing oscillation. By the use of strobing laser beams, longitudinal sections of the structures were photographed and an account of the geometry of these structures is reported.When the tube was unforced, similar structures occurred but they modulated in scale and frequency, and their orientation was random.A classification of structures is presented and examples are demonstrated in naturally occurring situations such as smoke from a cigarette, the wake behind a three-dimensional blunt body, and the high Reynolds number flow in a plume from a chimney. It is suggested that an examination of these structures may give some insight into the large-scale motion in fully turbulent flow.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.


2010 ◽  
Vol 297-301 ◽  
pp. 1439-1444
Author(s):  
Nicola Bianco ◽  
Oronzio Manca ◽  
Daniele Ricci

In this paper a numerical analysis on two-dimensional transient of the combined optical-thermal fields caused by a moving Gaussian laser source in a multilayer thin film structure on a glass substrate is carried out. The workpiece is considered semi-infinite along the motion direction and its optical and thermophysical properties are assumed temperature dependent. The COMSOL Multiphysics 3.4 code has been used to solve the combined thermal and electromagnetic problem. In this way, the optical field is considered locally one-dimensional and Maxwell equations are solved in order to evaluate the absorption in thin film. Results, in terms of transient temperature profiles and fields, are presented for different Peclet numbers and thin film thicknesses.


2012 ◽  
Vol 694 ◽  
pp. 225-251 ◽  
Author(s):  
Carlo Camporeale ◽  
Luca Ridolfi

AbstractA free-surface-induced morphological instability is studied in the laminar regime at large Reynolds numbers ($\mathit{Re}= 1\text{{\ndash}} 1{0}^{3} $) and on sub-horizontal walls ($\vartheta \lt 3{0}^{\ensuremath{\circ} } $). We analytically and numerically develop the stability analysis of an inclined melting–freezing interface bounding a free-surface laminar flow. The complete solution of both the linearized flow field and the heat conservation equations allows the exact derivation of the upper and lower temperature gradients at the interface, as required by the Stefan condition, from which the dispersion relationship is obtained. The eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial for the triggering of upstream propagating ice ripples, which grow at the liquid–solid interface. The kinematic and the dynamic conditions play a key role in controlling the formation of the free-surface fluctuations; these latter induce a streamline distortion with an increment of the wall-normal velocities and a destabilizing phase shift in the net heat transfer to the interface. Three-dimensional effects appear to be crucial at high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary conditions are also discussed.


Sign in / Sign up

Export Citation Format

Share Document