Ice ripple formation at large Reynolds numbers

2012 ◽  
Vol 694 ◽  
pp. 225-251 ◽  
Author(s):  
Carlo Camporeale ◽  
Luca Ridolfi

AbstractA free-surface-induced morphological instability is studied in the laminar regime at large Reynolds numbers ($\mathit{Re}= 1\text{{\ndash}} 1{0}^{3} $) and on sub-horizontal walls ($\vartheta \lt 3{0}^{\ensuremath{\circ} } $). We analytically and numerically develop the stability analysis of an inclined melting–freezing interface bounding a free-surface laminar flow. The complete solution of both the linearized flow field and the heat conservation equations allows the exact derivation of the upper and lower temperature gradients at the interface, as required by the Stefan condition, from which the dispersion relationship is obtained. The eigenstructure is obtained and discussed. Free-surface dynamics appears to be crucial for the triggering of upstream propagating ice ripples, which grow at the liquid–solid interface. The kinematic and the dynamic conditions play a key role in controlling the formation of the free-surface fluctuations; these latter induce a streamline distortion with an increment of the wall-normal velocities and a destabilizing phase shift in the net heat transfer to the interface. Three-dimensional effects appear to be crucial at high Reynolds numbers. The role of inertia forces, vorticity, and thermal boundary conditions are also discussed.

Author(s):  
Peter W Duck

The stability of developing entry flow in both two-dimensional channels and circular pipes is investigated for large Reynolds numbers. The basic flow is generated by uniform flow entering a channel/pipe, which then provokes the growth of boundary layers on the walls, until (far downstream) fully developed flow is attained; the length for this development is well known to be (Reynolds number)×the channel/pipe width/diameter. This enables the use of high-Reynolds-number theory, leading to boundary-layer-type equations which govern the flow; as such, there is no need to impose heuristic parallel-flow approximations. The resulting base flow is shown to be susceptible to significant, three-dimensional, transient (initially algebraic) growth in the streamwise direction, and, consequently, large amplifications to flow disturbances are possible (followed by ultimate decay far downstream). It is suggested that this initial amplification of disturbances is a possible and alternative mechanism for flow transition.


2008 ◽  
Vol 615 ◽  
pp. 371-399 ◽  
Author(s):  
S. DONG

We report three-dimensional direct numerical simulations of the turbulent flow between counter-rotating concentric cylinders with a radius ratio 0.5. The inner- and outer-cylinder Reynolds numbers have the same magnitude, which ranges from 500 to 4000 in the simulations. We show that with the increase of Reynolds number, the prevailing structures in the flow are azimuthal vortices with scales much smaller than the cylinder gap. At high Reynolds numbers, while the instantaneous small-scale vortices permeate the entire domain, the large-scale Taylor vortex motions manifested by the time-averaged field do not penetrate a layer of fluid near the outer cylinder. Comparisons between the standard Taylor–Couette system (rotating inner cylinder, fixed outer cylinder) and the counter-rotating system demonstrate the profound effects of the Coriolis force on the mean flow and other statistical quantities. The dynamical and statistical features of the flow have been investigated in detail.


1999 ◽  
Vol 395 ◽  
pp. 211-236 ◽  
Author(s):  
V. SHANKAR ◽  
V. KUMARAN

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such ‘non-parabolic’ flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.


1978 ◽  
Vol 88 (3) ◽  
pp. 451-463 ◽  
Author(s):  
A. E. Perry ◽  
T. T. Lim

By applying small lateral oscillations to a glass tube from which smoke was issuing, perfectly periodic coflowing jets and wake structures were produced at Reynolds numbers of order 300-1000. These structures remained coherent over long streamwise distances and appeared to be perfectly frozen when viewed under stroboscopic light which was synchronized with the disturbing oscillation. By the use of strobing laser beams, longitudinal sections of the structures were photographed and an account of the geometry of these structures is reported.When the tube was unforced, similar structures occurred but they modulated in scale and frequency, and their orientation was random.A classification of structures is presented and examples are demonstrated in naturally occurring situations such as smoke from a cigarette, the wake behind a three-dimensional blunt body, and the high Reynolds number flow in a plume from a chimney. It is suggested that an examination of these structures may give some insight into the large-scale motion in fully turbulent flow.


2019 ◽  
Vol 141 (12) ◽  
Author(s):  
Bayode E. Owolabi ◽  
David J. C. Dennis ◽  
Robert J. Poole

In this study, we examine the development length requirements for laminar Couette–Poiseuille flows in a two-dimensional (2D) channel as well as in the three-dimensional (3D) case of flow through a square duct, using a combination of numerical and experimental approaches. The parameter space investigated covers wall to bulk velocity ratios, r, spanning from 0 (purely pressure-driven flow) to 2 (purely wall driven-flow; 4 in the case of a square duct) and a wide range of Reynolds numbers (Re). The results indicate an increase in the development length (L) with r. Consistent with the findings of Durst et al. (2005, “The Development Lengths of Laminar Pipe and Channel Flows,” ASME J. Fluids Eng., 127(6), pp. 1154–1160), L was observed to be of the order of the channel height in the limit as Re→0, irrespective of the condition at the inlet. This, however, changes at high Reynolds numbers, with L increasing linearly with Re. In all the cases considered, a uniform velocity profile at the inlet was found to result in longer entry lengths than in a flow developing from a parabolic inlet profile. We show that this inlet effect becomes less important as the limit of purely wall-driven flow is approached. Finally, we develop correlations for predicting L in these flows and, for the first time, also present laser Doppler velocimetry (LDV) measurements of the developing as well as fully-developed velocity profiles, and observe good agreement between experiment, analytical solution, and numerical simulation results in the 3D case.


1971 ◽  
Vol 50 (4) ◽  
pp. 645-655 ◽  
Author(s):  
M. D. Hughes ◽  
J. H. Gerrard

Flow visualization has been used quantitatively to determine the flow relative to a piston and a free surface started from rest. The discharge of water from a cylindrical reservoir was investigated. Flow with a free surface started from rest was found to have a critical Reynolds number (based on tube diameter and surface speed) of about 450 above which a ring vortex was produced just below the surface.Measurements at Reynolds numbers of 525 and 1200 were compared with computations made by the methods described in Part 1. The computed drift of tracer particles agreed well with observed values. The largest discrepancies occurred in the radial component of the drift in the early stages of the motion and amounted to 2½% of the tube diameter.


2012 ◽  
Vol 23 (3) ◽  
pp. 373-394
Author(s):  
S. A. SHEPHERD

Secondary flows consisting of two pairs of vortices arise when two fluid streams meet at a confluence, such as in the airways of the human lung during expiration or at the vertebrobasilar junction in the circulatory system, where the left and right vertebral arteries converge. In this paper the decay of these secondary flows is studied by considering a four-vortex perturbation from Poiseuille flow in a straight, three-dimensional pipe. A polynomial eigenvalue problem is formulated and the exact solution for the zero Reynolds numberRis derived analytically. This solution is then extended by perturbation analysis to produce an approximation to the eigenvalues forR≪ 1. The problem is also solved numerically for 0 ≤R≤ 2,000 by a spectral method, and the stability of the computed eigenvalues is analysed using pseudospectra. For all Reynolds numbers, the decay rate of the swirling perturbation is found to be governed by complex eigenvalues, with the secondary flows decaying more slowly asRincreases. A comparison with results from an existing computational study of merging flows shows that the two models give rise to similar secondary flow decay rates.


Sign in / Sign up

Export Citation Format

Share Document