Micromechanical Characteristics of Hardly Deformable Mg Alloys

2016 ◽  
Vol 368 ◽  
pp. 33-36 ◽  
Author(s):  
Saumya Gupta ◽  
Veronika Koudelková ◽  
Vladimír Hrbek ◽  
Jiří Němeček

Mechanical characterization of individual microstructural phases of hardly deformable magnesium alloys is of crucial importance for the development of multi-scale material models. The magnesium alloys are used for preparation of fine tubes with diameter of a few millimeters and tens of millimeters wall thickness. It is hard to control an ordinary drawing process for the preparation of such tubes. However, the tubes can be prepared with a laser dieless drawing process that is, in contrary to conventional drawing, able to draw low formability materials and it is able to produce variable cross-sections of the tube or a wire with high precision. The magnesium alloy tubes are used in various fields as micro-electro-mechanical systems, medicine, electrical, biological and chemical fields. In this paper, preliminary microstructural studies and local mechanical characterization of pure Mg, MgCa0.8 and AZ31 magnesium alloys used for tube extrusion, is provided. The material microstructure is studied by means of scanning electron, atomic force microscopes and nanoindentation. Elastic properties and volume fractions of mechanically distinct phases that are not accessible by standard testing methods are provided in the paper.

2002 ◽  
Vol 16 (04) ◽  
pp. 135-141
Author(s):  
MARIANA POP ◽  
TRAIAN CANTA ◽  
AUREL POP

The aim of this paper is to present a mathematical model for the steady state of the dieless drawing process. With this model, it is possible to study the influence of various process parameters, such as temperature, strain, strain rate and stress. The paper also presents some elements of the process control for producing variable cross-sections (cone-contour and sinus-contour).


2016 ◽  
Vol 838-839 ◽  
pp. 459-467 ◽  
Author(s):  
Tsuyoshi Furushima ◽  
Ken-Ichi Manabe

A heat assisted superplastic dieless drawing process that requires no dies or tools is applied to the drawing of a Zn-22Al and β titanium superplastic alloy for not only circular but also noncircular microtubes such as square, rectangular and noncircular multi core tubes having square inner and rectangular outer cross sections. As a result, the tendency has been to increase the limiting reduction in area with increasing strain rate sensitivity index m value. We successfully fabricate Zn-22Al alloy, AZ31 magnesium, β titanium circular microtubes with outer diameter of 191μm, 890μm and 180μm, respectively. Furthermore, a noncircular micro tube, which has inner square tubes with a 335μm side, and an outer rectangular tube of 533×923μm were fabricated successfully. During the dieless drawing process, the geometrical similarity law in cross section which the tube is drawn while maintaining its initial shape can be satisfied. The smooth surface can be obtained in case of superplastic dieless drawing process without contact situation with dies and tools. Consequently, it is found that the superplastic dieless drawing is effective for the fabrication of circular and noncircular multicore microtubes.


2013 ◽  
Vol 24 (35) ◽  
pp. 355703 ◽  
Author(s):  
M Kopycinska-Müller ◽  
K-B Yeap ◽  
S Mahajan ◽  
B Köhler ◽  
N Kuzeyeva ◽  
...  

2018 ◽  
Vol 122 ◽  
pp. 657-668 ◽  
Author(s):  
Thomas Sango ◽  
Arnaud Maxime Cheumani Yona ◽  
Lucie Duchatel ◽  
Adeline Marin ◽  
Maurice Kor Ndikontar ◽  
...  

Micromachines ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 970
Author(s):  
J. Israel Martínez-López ◽  
Héctor Andrés Betancourt Cervantes ◽  
Luis Donaldo Cuevas Iturbe ◽  
Elisa Vázquez ◽  
Edisson A. Naula ◽  
...  

In this paper, we characterized an assortment of photopolymers and stereolithography processes to produce 3D-printed molds and polydimethylsiloxane (PDMS) castings of micromixing devices. Once materials and processes were screened, the validation of the soft tooling approach in microfluidic devices was carried out through a case study. An asymmetric split-and-recombine device with different cross-sections was manufactured and tested under different regime conditions (10 < Re < 70). Mixing performances between 3% and 96% were obtained depending on the flow regime and the pitch-to-depth ratio. The study shows that 3D-printed soft tooling can provide other benefits such as multiple cross-sections and other potential layouts on a single mold.


Author(s):  
Wyatt Leininger ◽  
Xinnan Wang ◽  
X. W. Tangpong ◽  
Marshall McNea

In this study, the mechanical properties of multi-walled carbon nanotube (MWCNT) reinforced epoxy composites were characterized using an in-house designed micro/nano tensile load stage in conjunction with an atomic force microscope (AFM). The surface of the nanocomposite was scanned by the AFM during intermittent tensile testing. Micro/nano deformation was observed, and the reinforcing mechanisms were discussed in conjunction with architecture and elastic modulus. Results show that the MWCNT reinforced nanocomposite has an increased elastic modulus. The Halpin-Tsai and Hui-Shia models were compared to the experimental results, and the Halpin-Tsai was found to correlate when only the load bearing outer layer of the MWCNTs were considered. Additionally, it is concluded that the combination of the load stage and AFM is capable of capturing insitu deformation progress for small strain increments.


2017 ◽  
Vol 112 (2) ◽  
pp. 398-409 ◽  
Author(s):  
Yusheng Shen ◽  
Dongshi Guan ◽  
Daniela Serien ◽  
Shoji Takeuchi ◽  
Penger Tong ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document