Effects of Cattaneo-Christov Heat Flux on Casson Nanofluid Flow Past a Stretching Cylinder

2017 ◽  
Vol 378 ◽  
pp. 28-38 ◽  
Author(s):  
Oluwole Daniel Makinde ◽  
V. Nagendramma ◽  
Chakravarthula S.K. Raju ◽  
A. Leelarathnam

In this paper, we investigate the combined effects of Brownian motion, thermophoresis and Cattaneo-Christov heat flux on Casson nanofluid boundary layer flow over a stretching cylinder. The governing partial differential equations (PDEs) are obtained and transformed into a system of ordinary differential equations (ODEs) by employing appropriate similarity solution. The model nonlinear boundary value problem is tackled numerically using fourth-fifth order Runge-Kutta integration scheme with shooting technique. Effects of various thermophysical parameters on the velocity, temperature and concentration profiles as well as skin friction and Sherwood number are presented graphically and discussed quantitatively. It is found that thermal relaxation parameter minimizes the temperature field and boosting the rate of heat transfer per unit volume. This heat flux conditions are very useful for thermal transport control in manufacturing and chemical industries.

2018 ◽  
Vol 7 (2) ◽  
pp. 91-101 ◽  
Author(s):  
M. Archana ◽  
B. J. Gireesha ◽  
B. C. Prasannakumara ◽  
R.S.R. Gorla

Abstract The heat and mass transfer of rotating Casson nanofluid flow is incorporated in the present study. Influence of magnetic field, nonlinear thermal radiation, viscous dissipation and Joule heating effects are taken into the account. A set of nonlinear ordinary differential equations are obtained from the governing partial differential equations with the aid of suitable similarity transformations. The resultant equations are solved for the numerical solution using Runge-Kutta-Fehlberg fourth-fifth order method along with shooting technique. The impact of several existing physical parameter on velocity, temperature and nanofluid concentration profiles are analyzed through graphs and tables in detail. It is found that, velocity component decreases and temperature component increases for rotating parameter.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
R. S. Varun Kumar ◽  
R. J. Punith Gowda ◽  
R. Naveen Kumar ◽  
M. Radhika ◽  
B. C. Prasannakumara

AbstractThe current paper explores the influence of hybrid nanoparticles on the dusty liquid flow through a stretching cylinder by employing the modified Fourier heat flux law. Two phase model is implemented in the present research to characterise the fluid flow. Molybdenum disulphide and silver are used as nanoparticles suspended in base fluid water. The equations which represent the described flow are changed into a set of ordinary differential equations by opting appropriate similarity variables. The reduced dimensionless nonlinear ODEs are numerically solved out by using Runge–Kutta–Fehlberg fourth fifth order inclusive of shooting approach. The impact of several dimensionless parameters over velocity and thermal gradients are deliberated by using graphs. Graphical illustrations for skin friction are also executed. Result outcome reveals that, rise in values of mass concentration of particle declines the velocity and thermal gradient of both dust and fluid phases and cumulative in curvature parameter upsurges the velocity and thermal gradient within the boundary. Further, the heightening of thermal relaxation parameter enhances the thermal profile of both fluid and dust phases.


2018 ◽  
Vol 388 ◽  
pp. 61-76 ◽  
Author(s):  
G. Vinod Kumar ◽  
S. Vijaya Kumar Varma ◽  
R.V.M.S.S. Kiran Kumar

The present investigation has put a focus on the hydromagnetic boundary layer unsteady flow of a nanofluid over a stretching sheet. A new heat flux model named Cattaneo-Christov is applied as the substitution of classical Fourier’s law. Buongiorno’s model is incorporated. The coupled non-linear transformed equations are solved numerically by using shooting technique with MATLAB bvp4c package. The obtained results are presented and discussed through graphs and tables in detail. Our results reveal that the unsteady parameter reduces all the three boundary layer thickness. The thermal relaxation parameter exhibits a non-conducting nature that makes the decline in fluid temperature.


2018 ◽  
Vol 7 (4.10) ◽  
pp. 233
Author(s):  
K. Gangadhar ◽  
K. V. Ramana ◽  
B. Rushi Kumar

The influence of the heat transfer within a boundary layer flow and magneto hydro dynamic slip flow of a Maxwell fluid over a stretching cylinder is analyzed and discussed in the present article. The effects of viscous dissipation and thermal jump are assumed. The procedure of heat transfer through hypothesis of Cattaneo-Christov heat flux is considered. We converted non-linear partial differential equations for mass, momentum and energy into a system of coupled highly non linear ordinary differential equations with proper boundary conditions by the help of suitable similarity transformations. The succeeding ordinary differential equations are solved by using Spectral relaxation technique. The solution is obtained in zero curvature parameter as well as non-zero curvature parameter.  i.e. for flow above a flat plate and flow above a cylinder. The flow and heat transfer attributes are witnessed to be encouraged in an elaborate mode by Prandtl number, thermal jump parameter, thermal relaxation parameter, Deborah number, slip velocity parameter, Eckert number and the magnetic parameter. Our findings reveal that one of the possible ways to decrease the Deborah number by boosting fluid velocity. It is also perceived that in the case of flow over a stretching cylinder, the momentum boundary layer thickness and the velocity of the fluid increases. Furthermore, an increase in slip velocity factor reduces the magnitude of skin friction.  


2008 ◽  
Vol 86 (6) ◽  
pp. 853-855 ◽  
Author(s):  
A Ishak ◽  
R Nazar ◽  
I Pop

The unsteady laminar boundary-layer flow over a continuously stretching surface in a viscous and incompressible quiescent fluid is studied. The unsteadiness in the flow and temperature fields is caused by the time dependence of the stretching velocity and the surface heat flux. The nonlinear partial differential equations of continuity, momentum, and energy, with three independent variables, are reduced to nonlinear ordinary differential equations, before they are solved numerically by the Keller-box method. Comparison with available data from the open literature as well as the exact solution for the steady-state case of the present problem is made, and found to be in good agreement. Effects of the unsteadiness parameter and Prandtl number on the flow and heat transfer characteristics are thoroughly examined.PACS No.: 47.15.Cb


2013 ◽  
Vol 18 (2) ◽  
pp. 447-459 ◽  
Author(s):  
S. Mukhopadhyay ◽  
R.S.R Gorla

An axi-symmetric laminar boundary layer flow of a viscous incompressible fluid and heat transfer towards a stretching cylinder is presented. Velocity slip is considered instead of the no-slip condition at the boundary. Similarity transformations are used to convert the partial differential equations corresponding to the momentum and heat equations into non-linear ordinary differential equations. Numerical solutions of these equations are obtained by the shooting method. It is found that the velocity decreases with increasing the slip parameter. The skin friction as well as the heat transfer rate at the surface is larger for a cylinder compared to those for a flat plate.


2018 ◽  
Vol 7 (4.33) ◽  
pp. 17
Author(s):  
Siti Nur Aisyah Azeman ◽  
. .

The dual solutions in the boundary layer flow and heat transfer in the presence of thermal radiation is quantitatively studied. The governing partial differential equations are derived into a system of ordinary differential equations using a similarity transformation, and afterward numerical solution obtained by a shooting technique. Dual solutions execute within a certain range of opposing and assisting flow which related to these numerical solutions. The similarity equations have two branches, upper or lower branch solutions, within a certain range of the mixed convection parameters. Further numerical results exist in our observations which enable to discuss the features of the respective solutions.  


2019 ◽  
Vol 33 (31) ◽  
pp. 1950376
Author(s):  
Madhu Aneja ◽  
Sapna Sharma

The characteristics of buoyancy-driven convection of nanofluid stream containing motile gyrotactic micro-organisms over a continuous heated surface are explored. The benefits of including micro-organisms to the suspension incorporate micro-scale mixing and foreseen enhanced stability of nanofluid. For heat transfer and mass transfer processes, non-Fourier’s heat flux theory and non-Fick’s mass flux theory are employed. This theory is actively under investigation to resolve some drawbacks of the famous Fourier’s Law and Fick’s Law. The modified parameters in conventional laws are thermal and solutal relaxation times, respectively. The governing equations are remodeled using appropriate similarity transformations into a system of coupled ordinary differential equations. Finite Element Methodology is used to obtain the solution of nonlinear coupled differential equations. The governing equations are associated with dimensionless parameters like [Formula: see text]. The influence of these parameters is analyzed graphically on velocity, temperature profile, concentration profile and density of micro-organisms. The computational results obtained reveal that the temperature profile and concentration profile have an inverse relationship with thermal relaxation and solutal relaxation time, respectively. Furthermore, the velocity increases with increasing values of the Richardson number, while a reverse pattern is observed for bioconvection Rayleigh number and Buoyancy ratio parameter.


2019 ◽  
Vol 8 (8) ◽  
pp. 1648-1653
Author(s):  
Mohamed Y. Abou-Zeid

This article deals with the influence of Cattaneo-Christov heat flux on MHD flow of biviscosity nanofluid between two rotating disks through a porous media. Von Karman transformations are used to transform system of partial differential equations to non-linear ordinary differential equations. This system are solved by using homotopy perturbation method. Numerical results for the behaviors of the radial, axial and tangential velocities, temperature and nanoparticles with the physical parameters of the problem are obtained. These results are depicted graphically and discussed in details. The obtained results show that the tangential velocity increases with the increase of both the stretching and rotation parameters. Moreover, it is found that the stretching and thermal relaxation parameters increase the temperature, while they increase or decrease the nanoparticles concentration. Comparison between the obtained results and those obtained by other researchers is made during this study.


Author(s):  
Macharla Jayachandra Babu ◽  
Naramgari Sandeep ◽  
Chakravarthula S.K. Raju

In this paper, we analyzed the thermophoresis and Brownian motion effects on the boundary layer flow of a magnetohydrodynamic Eyring-Powell nanofluid over a permeable cone in the presence of buoyancy forces and suction/injection effects. The governing partial differential equations are transformed into set of non-linear coupled ordinary differential equations by using self-suitable transformations, which are then solved numerically using Runge-Kutta fourth order along with shooting technique. The obtained results present the effects of various non-dimensional governing parameters on velocity, temperature and concentration profiles. Also, enumerated and analyzed the friction factor, local Nusselt and Sherwood numbers. We presented dual solutions for suction and injection cases and found an excellent agreement of the present results with the existed studies under some special limited cases. Result indicates that dual solutions are available only for particular range of suction or injection parameter and Eyring-Powell parameter have tendency to enhance the heat transfer rate.


Sign in / Sign up

Export Citation Format

Share Document