Transient Heat Transfer in a Packed-Bed Elliptic Cylindrical Reactor: A Finite-Volume Approach

2017 ◽  
Vol 380 ◽  
pp. 79-85 ◽  
Author(s):  
R. Moura da Silva ◽  
A.G. Barbosa de Lima ◽  
L. Gomes de Oliveira ◽  
Morgana Vasconcellos Araújo ◽  
R.S. Santos

This work aims to develop a transient three-dimensional mathematical model using the elliptic cylindrical coordinate system, to predict heat transfer in a elliptic cylindrical packed fixed bed reactor. The model considers variable thermo physical properties and a parabolic temperature profile at the fluid inlet. The governing equation is solved using the finite volume method. Results of temperature profile along the reactor are presented and discussed at different moments.It was verified that the maximum heat transfer rate inside the reactor occurs near the extreme region close to minor semi-axis of the ellipse; the higher temperatures at the reactor surface are also in this region, along the entire height of the bed; the steady-state regime is reached at t = 4.5 s of process, presenting after this time interval,small axial temperature gradients and high radial gradients along of the reactor bed; the parabolic temperature profile give to the bed a predominance of radial temperature gradients, and the radial porosity profile favours a higher heat transfer rate at reactor surface.

Author(s):  
T Povey ◽  
K. S. Chana ◽  
T. V. Jones

In modern gas turbine engines there exist significant temperature gradients in the combustor exit flow. These gradients arise because both fuel and dilution air are introduced within the combustor as discrete jets. The effects of this non-uniform temperature field on the aerodynamics and heat transfer rate distributions of nozzle guide vanes and turbine blades is difficult to predict, although an increased understanding of the effects of temperature gradients would enhance the accuracy of estimates of turbine component life and efficiency. Low-frequency measurements of heat transfer rate have been conducted on an annular transonic intermediate-pressure (IP) nozzle guide vane operating downstream of a high-pressure (HP) rotating turbine stage. Measurements were conducted with both uniform and non-uniform inlet temperature profiles. The non-uniform temperature profile included both radial and circumferential gradients of temperature. Experiments were conducted in the isentropic light piston facility at QinetiQ Pyestock, a short-duration engine-size turbine facility with 1.5 turbine stages, in which Mach number, Reynolds number and gas—wall temperature ratios are correctly modelled. Experimental heat transfer results are compared with predictions performed using boundary layer methods.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3711
Author(s):  
Asifa ◽  
Talha Anwar ◽  
Poom Kumam ◽  
Zahir Shah ◽  
Kanokwan Sitthithakerngkiet

In this modern era, nanofluids are considered one of the advanced kinds of heat transferring fluids due to their enhanced thermal features. The present study is conducted to investigate that how the suspension of molybdenum-disulfide (MoS2) nanoparticles boosts the thermal performance of a Casson-type fluid. Sodium alginate (NaAlg) based nanofluid is contained inside a vertical channel of width d and it exhibits a flow due to the movement of the left wall. The walls are nested in a permeable medium, and a uniform magnetic field and radiation flux are also involved in determining flow patterns and thermal behavior of the nanofluid. Depending on velocity boundary conditions, the flow phenomenon is examined for three different situations. To evaluate the influence of shape factor, MoS2 nanoparticles of blade, cylinder, platelet, and brick shapes are considered. The mathematical modeling is performed in the form of non-integer order operators, and a double fractional analysis is carried out by separately solving Caputo-Fabrizio and Atangana-Baleanu operators based fractional models. The system of coupled PDEs is converted to ODEs by operating the Laplace transformation, and Zakian’s algorithm is applied to approximate the Laplace inversion numerically. The solutions of flow and energy equations are presented in terms of graphical illustrations and tables to discuss important physical aspects of the observed problem. Moreover, a detailed inspection on shear stress and Nusselt number is carried out to get a deep insight into skin friction and heat transfer mechanisms. It is analyzed that the suspension of MoS2 nanoparticles leads to ameliorating the heat transfer rate up to 9.5%. To serve the purpose of achieving maximum heat transfer rate and reduced skin friction, the Atangana-Baleanu operator based fractional model is more effective. Furthermore, it is perceived that velocity and energy functions of the nanofluid exhibit significant variations because of the different shapes of nanoparticles.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mahyar Ashouri ◽  
Mohammad Mehdi Zarei ◽  
Ali Moosavi

Purpose The purpose of this paper is to investigate the effects of geometrical parameters, eccentricity and perforated fins on natural convection heat transfer in a finned horizontal annulus using three-dimensional lattice Boltzmann flux solver. Design/methodology/approach Three-dimensional lattice Boltzmann flux solver is used in the present study for simulating conjugate heat transfer within an annulus. D3Q15 and D3Q7 models are used to solve the fluid flow and temperature field, respectively. The finite volume method is used to discretize mass, momentum and energy equations. The Chapman–Enskog expansion analysis is used to establish the connection between the lattice Boltzmann equation local solution and macroscopic fluxes. To improve the accuracy of the lattice Boltzmann method for curved boundaries, lattice Boltzmann equation local solution at each cell interface is considered to be independent of each other. Findings It is found that the maximum heat transfer rate occurs at low fin spacing especially by increasing the fin height and decreasing the internal-cylindrical distance. The effect of inner cylinder eccentricity is not much considerable (up to 5.2% enhancement) while the impact of fin eccentricity is more remarkable. Negative fin eccentricity further enhances the heat transfer rate compared to a positive fin eccentricity and the maximum heat transfer enhancement of 91.7% is obtained. The influence of using perforated fins is more considerable at low fin spacing although some heat transfer enhancements are observed at higher fin spacing. Originality/value The originality of this paper is to study three-dimensional natural convection in a finned-horizontal annulus using three-dimensional lattice Boltzmann flux solver, as well as to apply symmetry and periodic boundary conditions and to analyze the effect of eccentric annular fins (for the first time for air) and perforated annular fins (for the first time so far) on the heat transfer rate.


Author(s):  
Hiroki Kobayashi ◽  
Kentaro Yaji ◽  
Shintaro Yamasaki ◽  
Kikuo Fujita

Abstract Heat exchangers are devices that typically transfer heat between two fluids. The performance of a heat exchanger such as heat transfer rate and pressure loss strongly depends on the flow regime in the heat transfer system. In this paper, we present a density-based topology optimization method for a two-fluid heat exchange system, which achieves a maximum heat transfer rate under fixed pressure loss. We propose a representation model accounting for three states, i.e., two fluids and a solid wall between the two fluids, by using a single design variable field. The key aspect of the proposed model is that mixing of the two fluids can be essentially prevented. This is because the solid constantly exists between the two fluids due to the use of the single design variable field. We demonstrate the effectiveness of the proposed method through three-dimensional numerical examples in which an optimized design is compared with a simple reference design, and the effects of design conditions (i.e., Reynolds number, Prandtl number, design domain size, and flow arrangements) are investigated.


Sign in / Sign up

Export Citation Format

Share Document