Effect of Thermocyclic Treatment with Different Cooling Rates on the Mechanical Characteristics of 42CD4 Low-Alloy Steel

2019 ◽  
Vol 397 ◽  
pp. 169-178
Author(s):  
Fethia Bouaksa ◽  
Mamoun Fellah ◽  
Naouel Hezil ◽  
Ridha Djellabi ◽  
Mohamed Zine Touhami ◽  
...  

The aim of this study was to investigate the influence of thermo-cyclic treatments on the mechanical characteristics (Hardness and Resilience) of low-alloy 42CD4 steel. Thermocyclic treatment on 42CD4 steel was operated for four cycles at 850 °C for 30 min. After each cycle, the steel sample was cooled in different medium (open air and water) in order to check the effect of the cooling rate on the microstructure characteristics. It was found that the cooling rate can affect the mechanical characteristics of the steel. The hardness values of steel cooled in water were higher than those of steel cooled in air. Additionally, there was an increase in the resilience of steel sample with the increase of thermocyclic number.

Author(s):  
M. P. Howson ◽  
B. P. Wynne ◽  
R. D. Mercado-Solis ◽  
L. A. Leduc-Lezama ◽  
J. Jonny ◽  
...  

The quenching performance of a copper nanofluid (copper nanoparticles in de-ionized water), prepared using laser ablation, is compared to de-ionized water in both the still and agitated state. The nanoparticles significantly enhanced heat extraction in the still condition, increasing the average cooling rate within the critical temperature range for low alloy steel phase transformations (850–300 °C) from 152 °C/s to 180 °C/s, approximately the same rate as highly agitated de-ionized water. The nanofluid under low levels of agitation saw a decrease in quenching performance relative to the still condition, while higher levels of agitation showed similar levels of heat extraction to that of agitated de-ionized water. The losses of Brownian motion and microlayering mechanisms are suggested as potential causes for the reduction in the performance of agitated nanofluids.


2020 ◽  
Vol 56 (5) ◽  
pp. 3995-4005
Author(s):  
Guofang Liang ◽  
Qiyang Tan ◽  
Yingang Liu ◽  
Tao Wu ◽  
Xianliang Yang ◽  
...  

2012 ◽  
Vol 445 ◽  
pp. 655-660 ◽  
Author(s):  
S. Mridha ◽  
A.N.Md Idriss ◽  
T.N. Baker

Surface cladding utilizes a high energy input to deposit a layer on substrate surfaces providing protection against wear and corrosion. In this work, TiC particulates were incorporated by meltingsingle tracksin powder preplaced onto AISI 4340 low alloy steel surfaces using a Tungsten Inert Gas (TIG) torch with a range of processing conditions. The effects of energy input and powder content on the melt geometry, microstructure and hardness were investigated. The highest energy input (1680 J/mm) under theTIG torchproduced deeper (1.0 mm) and wider melt pools, associated with increased dilution, compared to that processed at the lowest energy (1008 J/mm). The melt microstructure contained partially meltedTiC particulatesassociated with dendritic, cubic and globular typecarbidesprecipitated upon solidification of TiC dissolved in the melt; TiC accumulated more near to the melt-matrix interface and at the track edges. Addition of 0.4, 0.5 and 1.0 mg/mm2TiC gave hardness values in the resolidified melt pools between 750 to over 1100Hv, against a base hardness of 300 Hv; hardness values are higher in tracks processed with a greater TiC addition and reduced energy input.


2019 ◽  
Vol 61 (1-2) ◽  
pp. 32-38 ◽  
Author(s):  
M. L. Lobanov ◽  
M. L. Krasnov ◽  
V. N. Urtsev ◽  
S. V. Danilov ◽  
V. I. Pastukhov

1965 ◽  
Vol 9 ◽  
pp. 289-303
Author(s):  
H. Yakowitz ◽  
D. L. Vieth ◽  
K. F. J. Heinrich ◽  
R. E. Michaelis

AbstractMost modern instrumental methods of analysis depend on the use of known standards of composition for calibration. Newer analytical techniques, such as the solids mass spectrometer, laser probe and, especially, the electron-probe microanalyzer have reduced the amount of a sample which can be analyzed quantitatively to a range of about 0.1 to as small as 0.00005 μg. As a corollary to these microanalytical advances, homogeneity requirements have become severe to meet analytical standards. This paper describes a continuation of the National Bureau of Standards' effort to characterize more fully existing standards as to suitability for the new microanalytical techniques. An NBS cartridge brass sample in both the wrought (NBS-1102) and chill cast forms (NBS-C1102), as well as a low-alloy steel sample (NBS-463), have been investigated by means of electron-probe micreanalysis and optical metallography. Some 17 elements are contained in the brass, while 25 elements are found in the steel. Results for 10 elements in the steel and 6 elements in the brass are presented. In the steel, iron, nickel, copper, and silicon ate essentially distributed homogeneously at micron levels, while manganese, tantalum, niobium, zirconium, sulfur, and chromium are not. In the brass, copper and zinc are distributed homogeneously at micron levels while lead, sulfur, aluminum, and silicon are not. Electron-probe micreanalyzer results indicate that both NBS-1102 and NBS-C1102 brass are suitable for use as a calibration standard for electronprobe microanalysis as well as other microsnalyticat techniques, such as the solids mass spectrometer. The results for brass have been corroborated by a number of laboratories using the electron-probe analyzer.


2019 ◽  
Vol 293 ◽  
pp. 02001
Author(s):  
Porawit Jiandon ◽  
Sukangkana Talangkun

This research aimed to study an effect of cooling rates on T6 treatment process of B390 aluminium hypereutectic alloy. B390 casting samples were casted with pouring temperature of 710°C and solidified in three different cooling rates of 33.33, 28.60 and 22.22°C/s, respectively using three metal moulds. After that samples were subjected to T6 treatment: solution treated at 510°C for 30 min and aged at 200°C at various times. However, after ageing, hardness values of as-casted samples reduced with increasing cooling rate. It was found that the specimen cooled with the highest cooling rate exhibited the highest hardness. Peak hardness values of samples cooled with cooling rate of 33.33, 28.60 and 22.22°C/s after ageing obtained from ageing time of 3, 6 and 8 hour, respectively. Furthermore, the result showed that morphology of primary silicon, eutectic silicon and Ali5(Mn, Fe)3Si2 phase presented in the aged specimen cooled with the highest cooling rate exhibited more globular, finer and distributed more evenly compared with the slower cooled samples. It can be concluded that rapid cooling rate increases concentration of a-solid solution resulted in shorter aging time.


Sign in / Sign up

Export Citation Format

Share Document