Effect of Grain Boundary Geometry on Grain Rotation during Curvature-Driven Grain Shrinkage

2016 ◽  
Vol 9 ◽  
pp. 73-81 ◽  
Author(s):  
L.A. Barrales-Mora ◽  
Jann Erik Brandenburg ◽  
Dmitri A. Molodov

Molecular dynamics simulations were performed to analyze the curvature-driven shrinkage of individual cylindrical grains with geometrically different boundaries in Al. Grains with <100> tilt and mixed tilt-twist boundaries with the misorientations 5.5°, 16.3°, and 22.6° were simulated. The results revealed that the shrinking grains with tilt boundaries concurrently rotate increasing the misorientation angles, whereas grains with the mixed boundaries did not rotate during their shrinkage. Apparently, the grain boundary geometry/structure has a crucial impact on the observed rotational behavior of the computed grains. The grains with tilt boundaries rotate due to the lack of effectively operating mechanisms for annihilation of edge dislocations, which compose such boundaries. In contrast, for the mixed boundaries composed of edge-screw dislocations the sufficiently fast operating mechanisms of dislocation elimination are available, which facilitates grain shrinkage without rotation.

1995 ◽  
Vol 10 (4) ◽  
pp. 803-809 ◽  
Author(s):  
W. Ito ◽  
A. Oishi ◽  
S. Mahajan ◽  
Y. Yoshida ◽  
T. Morishita

Microstructures of a-axis oriented YBa2Cu3O7−x films made by newly developed de 100 MHz hybrid plasma sputtering were investigated using transmission electron microscopy (TEM). The films deposited on (110) NdGaO3 and (100) SrTiO3 substrates were found to grow in a perfect epitaxial fashion and with clear interface. The plan view of the TEM image showed that both films were comprised of two kinds of grains having the c axis aligning along two perpendicular directions in the plane with equal probability. The structures of the grain boundary, however, were found to be very different for the two films from the plan views. The film on NdGaO3 showed a lot of twist boundaries, while the film on SrTiO3 consisted of many symmetrical tilt boundaries and basal-plane-faced tilt boundaries. The type of grain boundary is determined by the anisotropic growth rates of the film between c direction and a-b direction.


1990 ◽  
Vol 213 ◽  
Author(s):  
B.J. Pestman ◽  
J. Th. M. De Hosson ◽  
V. Vitek ◽  
F.W. Schapink

ABSTRACTThe interaction of 1/2<1 1 0> screw dislocations with symmetric [1 1 0] tilt boundaries was investigated by atomistic simulations using many-body potentials representing ordered compounds. The calculations were performed with and without an applied shear stress. The observations were: absorption into the grain boundary, attraction of a lattice Shockley partial dislocation towards the grain boundary and transmission through the grain boundary under the influence of a shear stress. It was found that the interaction in ordered compounds shows similarities to the interaction in fcc.


1981 ◽  
Vol 5 ◽  
Author(s):  
C.B. Carter

ABSTRACTDislocations in low-angle tilt boundaries exhibit a wide variety of Burgers vector including a/2<112> a<001> and a<111>. The dislocations are usually dissociated: Shohkley, stair-rod and Frank partial dislocations may each be formed together with associated intrinsic and extrinsic stackingfaults. Dislocations in low-angle {111} twist boundaries are usually assumed to dissociated by a glide mechanism to give two types of extended nodes, known as P–type and K–type, which contain intrinsic and extrinsic stacking-faults respectively. It is shown that dissociation by climb actually occurs for both types of grain boundary.


2007 ◽  
Vol 556-557 ◽  
pp. 231-234 ◽  
Author(s):  
Yi Chen ◽  
Govindhan Dhanaraj ◽  
William M. Vetter ◽  
Rong Hui Ma ◽  
Michael Dudley

The interactions between basal plane dislocations (BPDs) and threading screw and edge dislocations (TSDs and TEDs) in hexagonal SiC have been studied using synchrotron white beam x-ray topography (SWBXT). TSDs are shown to strongly interact with advancing basal plane dislocations (BPDs) while TEDs do not. A BPD can cut through an individual TED without the formation of jogs or kinks. The BPDs were observed to be pinned by TSDs creating trailing dislocation dipoles. If these dipoles are in screw orientation segments can cross-slip and annihilate also potentially leaving isolated trailing loops. The three-dimensional (3D) distribution of BPDs can lead to aggregation of opposite sign edge segments leading to the creation of low angle grain boundaries (LAGBs) characterized by pure basal plane tilt of magnitude determined by the net difference in densities of the opposite sign dislocations. Similar aggregation can also occur against pre-existing prismatic tilt boundaries made up of TED walls with the net difference in densities of the opposite sign dislocations contributing some basal plane tilt character to the LAGB.


2021 ◽  
Vol 10 (1) ◽  
pp. 87-98
Author(s):  
Jiarui Zhang ◽  
Fan Yang ◽  
Yaping Liu ◽  
Zheng Zhong ◽  
Jinfeng Zhao

Abstract In this paper, the mechanical behavior of gradient nano-grained copper under uniaxial deformation was investigated using molecular dynamics simulations. The stress response was found to be different in the regions with different grain sizes, which was attributed to the different dislocation activities due to the dislocation-grain boundary synergies. The phenomenon of grain rotation was observed and a program was developed to accurately evaluate the grain rotation and explore its dependence on the grain size and the initial crystal orientation. It is found that all grains tend to rotate to the 30° orientation, consistent with the activation theory of the slip systems under the uniaxial deformation. The rotation magnitude is larger for larger grains, but the rotation rate is more diversely distributed for smaller grains, indicating more disturbance from grain boundary mechanisms such as the grain boundary sliding and the grain boundary diffusion for smaller grains. The effect of temperature on the grain rotation is also investigated, showing an increase of the dispersion of grain rotation distribution with the increase of temperature. This paper aims at providing insights into the synergistic deformation mechanisms from dislocations and grain boundaries accounting for the exceptional ductility of the gradient nano-grained metals.


2017 ◽  
Vol 31 (26) ◽  
pp. 1750237
Author(s):  
Zi-Yue Zhang

With molecular dynamics simulations, the growth of face-centered-cubic nanocrystalline materials Ni and Ni3Al has been studied. It is found that grain-rotation induced grain coalescence and curvature-driven grain-boundary migration are dominant mechanisms in the nanograin growth. A detailed comparison of the nanograin growth between the two systems is discussed in terms of grain rotation and grain sliding. We also study the temperature effect and the size effect in the nanograin growth. The tendency of twinning in the nanograin growth is discussed. It is found that in Ni3Al, it seems more possible for nanograins to grow into twin-like structures than single crystal unless at very high temperatures.


2019 ◽  
Vol 3 (3) ◽  
pp. 17 ◽  
Author(s):  
Bin Chen ◽  
Linli Zhu ◽  
Yunchang Xin ◽  
Jialin Lei

The plastic deformation behaviors of crystalline materials are usually determined by lattice dislocations. However, below a certain particle or grain size, focus is placed on the grain-boundary-mediated mechanisms (e.g., grain rotation, grain boundary sliding, and diffusion), which has been observed during recrystallization, grain growth, and plastic deformation. However, the underlying mechanisms of grain rotation remain to be studied. In this article, we review the theoretical models, molecular dynamics simulations, and experimental investigations on grain rotation. Especially, the development of in situ transmission electron microscopy (TEM) and X-ray characterization methods for probing grain boundary processes during plastic deformation provides a better understanding of the mechanisms of grain rotation. Moreover, the ability to acquire high-quality X-ray diffraction patterns from individual nanograins is expected to find broad applications in various fields such as physics, chemistry, materials science, physics, and nanoscience.


Sign in / Sign up

Export Citation Format

Share Document