Synthesis and Characterization of Sol-Gel Derived Hydroxyapatite-Bioglass Composite Nanopowders for Biomedical Applications

Author(s):  
S. Adibnia ◽  
Ali Nemati ◽  
Mohammad Hosseien Fathi ◽  
S. Baghshahi

The main purpose of this study is to prepare and characterize hydroxyapatite (HA)–10%wt bioglass (BG) composite nanopowders and its bioactivity. Composites of hydroxyapatite with synthesized bioglass are prepared at various temperatures. Suitable calcination temperature is chosen by evaluating of the phase composition. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques are utilized to characterize the prepared nanopowders. The bioactivity of the prepared composite samples is evaluated in an in vitro study by immersion of samples in simulated body fluid (SBF) for predicted time. Fourier transformed infrared (FTIR) spectroscopy and inductively coupled plasma (ICP) are used for evaluation of apatite formation and the bioactivity properties. Results show that HA-BG composite nanopowders are successfully prepared without any decomposition of hydroxyapatite. The suitable temperature for calcination is 600°C and the particle size of hydroxyapatite is about 40-70 nm. The apatite phase forms after 14 days immersing of the samples in SBF. It could be concluded that this process can be used to synthesize HA-BG composite nanopowders with improved bioactivity which is much needed for hard tissue repair and biomedical applications.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hajar Q. Alijani ◽  
Siavash Iravani ◽  
Shahram Pourseyedi ◽  
Masoud Torkzadeh-Mahani ◽  
Mahmood Barani ◽  
...  

AbstractGreener methods for the synthesis of various nanostructures with well-organized characteristics and biomedical applicability have demonstrated several advantages, including simplicity, low toxicity, cost-effectiveness, and eco-friendliness. Spinel nickel ferrite (NiFe2O4) nanowhiskers with rod-like structures were synthesized using a simple and green method; these nanostructures were evaluated by X-ray diffraction analysis, transmission electron microscopy, scanning electron microscopy, and X-ray energy diffraction spectroscopy. Additionally, the prepared nanowhiskers could significantly reduce the survival of Leishmania major promastigotes, at a concentration of 500 μg/mL; the survival of promastigotes was reduced to ≃ 26%. According to the results obtained from MTT test (in vitro), it can be proposed that further studies should be conducted to evaluate anti-leishmaniasis activity of these types of nanowhiskers in animal models.


2021 ◽  
Vol 21 (3) ◽  
pp. 1606-1612
Author(s):  
Narender Ranga ◽  
Atul Kumar ◽  
C. R. Mariappan ◽  
Surender Duhan

In this research work new type of bioglass ceramics successfully synthesized the bioglass composition: 50SiO2−30CaO−10P2O5−10MgO by sol–gel technique which was further heated up to 600 °C. Different characterization techniques were applied on the prepared bioglass powder to obtain the structural information. X-ray powder diffraction (XRD) and fourier-transform infrared spectroscopy (FTIR) analysis confirms the amorphous nature and apatite formation on surface of the sample. The time dependent biological activity was tested on immersed samples with simulated body fluid (SBF). Structural configuration of the hydroxyapatite layer along with nano-size as well as texture properties of the samples were confirmed using field emission scanning electron microscope (FE-SEM), high-resolution transmission electron microscopy (HR-TEM) and Brunauer–Emmett–Teller (BET) techniques, respectively. It was found that magnesium performs a pivotal role in bone proliferation and improves the thermophysical properties of the synthesized bioglass ceramics. The antibacterial effects were studied by two well-known pathogen Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus).


2006 ◽  
Vol 05 (02n03) ◽  
pp. 285-290 ◽  
Author(s):  
YONGHUA LENG ◽  
XINGGUO LI ◽  
HUAQUAN YANG ◽  
HENGHUI ZHOU

Submicron Li 0.8 CoO 2 particles were prepared by sol–gel method, and then ball-mill grinding method was adopted to make nanosized Li 0.8 CoO 2 powders. The two kinds of powders were then examined by X-ray diffraction (XRD), ICP (inductively coupled plasma), the multi-point BET (Brunauer, Emmett and Teller) and transmission electron micrographs (TEM). It appeared that the Li 0.8 CoO 2 nanoparticles exhibited quite different electrochemical properties, such as higher open-circuit voltage and lower discharge capacity, compared to submicron Li 0.8 CoO 2 particles.


Clay Minerals ◽  
2001 ◽  
Vol 36 (3) ◽  
pp. 447-464 ◽  
Author(s):  
J. M. Huggett ◽  
A. S. Gale ◽  
N. Clauer

AbstractVariegated palaeosols, which formed from weathering of clays, silts and brackish to freshwater limestones, are present in the Late Eocene–Early Oligocene Solent Group of the Hampshire Basin, southern UK. The composition and origin of the clay in three segments of the lower part of the Solent Group have been investigated by X-ray diffraction, microprobe analysis, inductively coupled plasma-mas spectrometry, K/Ar dating, high resolution scanning electron microscopy, analytical transmission electron microscopy and wet chemistry. The detrital clay mineral suite is dominated by illite and smectite with minor kaolinite and chlorite. Seasonal wetting and drying in gley soils has resulted in replacement of smectite by Fe-rich, or illite-rich illitesmectite. Illite has also formed with gypsum and calcite in ephemeral hypersaline alkaline lakes that periodically dried out. This illite may have precipitated directly from solution. X-ray diffraction data and probe analyses indicate that the neoformed illite is Fe-rich. The K and Fe for the illitization are thought to be derived from weathered glauconite reworked from the underlying Bracklesham Group and Barton Beds.


2018 ◽  
Vol 79 (4) ◽  
pp. 789-797
Author(s):  
Yenchun Liu ◽  
Chengyu Tsai ◽  
Robert Lianhuey Liu

Abstract This study recycles titanium dioxide (TiO2) that is contained in waste selective non-catalytic reduction (SNCR) catalysts using acid or alkali. The waste SNCR is then filtered, baked, ground and calcined to form a photo-catalytic powder. The nano-TiO2 photo-catalysts that are obtained using both processes are then tested and compared. The two TiO2 photo-catalysts that are produced from waste SNCR catalysts have a diameter of 30–40 nm. Energy dispersive spectrometry (EDS) and inductively coupled plasma (ICP) are used to determine the elemental composition of TiO2 and X-ray diffraction (XRD) is used to determine the crystalline phase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to determine the surface morphology, the structure and the particle size. The effect of placing porous TiO2 in a suspension is also determined. This study demonstrates the production of a photo-catalyst from an SNCR catalyst and its effect in advanced oxidation processes (AOP). When everdirect supra turquoise blue (FBL) dye wastewater is degraded in the presence of ultraviolet (UV) /TiO2, more than 90% of the total oxidizable carbon (TOC) is removed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Narges Vahedi-Notash ◽  
Majid M. Heravi ◽  
Ali Alhampour ◽  
Pourya Mohammadi

Abstract In this research, we reported an effective method for the synthesis of a new mesoporous triazine-based carbon (MTC) substrate and its application as the green and recoverable catalyst in the synthesis of organic compounds. The porous carbon acted as a substrate for silver active species after its surface modification by chloroacetonitrile (Ag@MTC). The Ag@MTC nanocatalyst was characterized by several techniques namely, Fourier-transform infrared spectroscopy, field emission scanning electron microscopy with energy dispersive spectroscopy, X-ray diffraction, transmission electron microscopy, Brunauer–Emmett–Teller surface area analysis, and inductively coupled plasma. The Ag@MTC catalyst was applied for the reduction of nitroaromatic compounds in aqueous media by using NaBH4 (reducing agent) at room temperature. This nanocatalyst can be readily recovered and recycled for at least nine runs without a notable decrease in its efficiency. Catalytic efficiency studies exhibited that Ag@MTC nanocatalyst had good activity towards reduction reactions.


2013 ◽  
Vol 680 ◽  
pp. 49-53
Author(s):  
Chang Yu ◽  
Xu Zhang ◽  
Kan He ◽  
Yue Liu ◽  
Jie Shan Qiu

A novel biocompatible Fe2+-chitosan (CTS)/citric acid modified carbon nanotube (CA-CNTs) composite (Fe2+-CTS/CA-CNTs) has been successfully synthesized by covalent bonding and crosslinking chemistry, followed by the reduction. The samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-Vis spectrum, X-ray diffraction (XRD), inductively coupled plasma (ICP), thermal gravimetric analysis (TGA), and vibrating sample magnetometer (VSM) techniques. The results show that the CTS has been successfully grafted to the CA-CNTs carrier and Fe2+ ions are absorbed on the CTS by coordination bond mode. It was found that the Fe2+-CTS/CA-CNTs composite shows good magnetic properties with a low ratio of remanence to saturation magnetization and is in a superparamagnetic state at room temperature. It is believed that the Fe2+-CTS/CA-CNTs composite will be potential for application in MRI.


2011 ◽  
Vol 1355 ◽  
Author(s):  
Sofia Dembski ◽  
Moritz Milde ◽  
Emeline Dassonneville ◽  
Carsten Gellermann ◽  
Torsten Klockenbring ◽  
...  

ABSTRACTLuminescent lanthanide doped SiO2/Hydroxylapatite (HAp) core/shell nanoparticles (NPs) were synthesized by sol-gel technology. The resulting NPs exhibited an amorphous SiO2 core and a crystalline luminescent shell. The formation of the HAp layer was possible at pH 8.5. The characterization of the resulting NPs was done by transmission electron microscopy, X-ray diffraction analysis, inductively-coupled plasma combined with optical emission spectrometry, and photoluminescence spectroscopy. Additionally, the newly developed SiO2/HAp:Ln3+ core/shell NPs were tested for their biocompatibility, e. g. by an in vitro cell culture based assay.


2011 ◽  
Vol 121-126 ◽  
pp. 1500-1503
Author(s):  
Hui Juan Ren ◽  
Hua Yang ◽  
De Hui Sun ◽  
Zhen Feng Cui ◽  
Guang Yan Hong

Rare earth europium (Eu(III))-pyromellitic acid (H4L)-1,10-phenanthroline (phen) ternary luminescent complex has been synthesized in polyvinylpyrrolidone (PVP) matrix by precipitation method. The chemical constitution of the complex has been demonstrated as PVP/EuL4/3L(phen)•2H2O by a combination of elemental analysis, inductively coupled plasma-atomic emission spectroscopy (ICP-AES) and Fourier-transform infrared spectroscopy (FT-IR). X-ray diffraction analysis (XRD) has shown that the complex is a new kind of crystal whose structure is totally different from two ligands. The morphology of the complex has been investigated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results have shown that the complex has a rodlike crystal structure and the diameter of the rod is about 400 nm. Thermogravimetric analysis (TG) has indicated that the luminescent complex is thermally stable below 300 °C. Photoluminescence spectra (PL) have revealed that the complex can emit Eu3+ characteristic red fluorescence under ultraviolet excitation.


2012 ◽  
Vol 554-556 ◽  
pp. 575-579 ◽  
Author(s):  
Yun Chuan Yang ◽  
Hong Hao Yu ◽  
Xin Ying Wang

The preparation of different morphological basic magnesium carbonate particles with hollow rod-like, hull of peanut and leaf from the pyrogenation of magnesium carbonate trihydrate were described. The morphology, crystal phase and purity of basic magnesium carbonate were characterized by scanning electron microscopy(SEM), transmission electron microscopy(TEM), X-ray diffraction (XRD) and inductively coupled plasma atomic emission spectrometer (ICP-AES). The results indicated that the formation of three morphological basic magnesium carbonates were obtained via platelike particles of magnesium carbonate trihydrate under certain conditions where the temperature and stirring rate were properly controlled. The length of the hollow rod means up to 6~7µm, and its diameter means up to 1~2µm.


Sign in / Sign up

Export Citation Format

Share Document