Use of Real-Time Programming Modules for Control of Actuator Positioning in Mechatronic System with Pneumatic Artificial Muscles

Author(s):  
Miroslav Rimár ◽  
Peter Šmeringai ◽  
Marcel Fedák

This paper explains proposed real-time control system algorithm modifications for control of drives containing the artificial muscles. The aim of these modifications is to create control algorithm more effective in spite to provide effective computational time to prepare measurement chain to add further artificial muscles to ensure movement in another directions. Described are devices, hardware and software equipment, as well as design of their involvement in the experimental device.

Author(s):  
Miroslav Rimár ◽  
Peter Šmeringai ◽  
Marcel Fedák ◽  
Štefan Kuna

This paper explains the design of real-time control system for control of drives containing the artificial muscles. Described is the design of hardware and software devices, as well as design of their involvement in the experimental device. In this paper are referred experimental measurements on the device, aimed at monitoring the change in observed characteristics caused by position changes in artificial muscles during their operation.


2015 ◽  
Vol 669 ◽  
pp. 361-369 ◽  
Author(s):  
Miroslav Rimár ◽  
Peter Šmeringai ◽  
Marcel Fedák ◽  
Štefan Kuna

This paper explains the design of real-time control system for control of drives containing the artificial muscles. Described is the design of devices hardware and software, as well as design of their involvement in the experimental device. In this paper are referred experimental measurements on the device, aimed at monitoring the change in observed characteristics caused by position changes in artificial muscles during their operation.


2000 ◽  
Vol 12 (2) ◽  
pp. 172-179
Author(s):  
Daigoro Isobe ◽  
◽  
Hiroshi Nakamura ◽  
Ryuta Shimizu ◽  
◽  
...  

In this paper, the Finite Element Method (FEM) and the previously proposed inverse theory for bimorph piezoelectric actuators are applied into a real time control algorithm of connected piezoelectric actuators. Most control schemes handle an entire system in series, which becomes a drawback when some elements lose their function in a higher redundant system. On the other hand, the FEM can handle the system in parallel by subdividing it into discrete finite elements, and can cope with flexibility in the change of form and material properties. Noncompatible finite elements are used to express the actuators in the control algorithm, and empirical formulae considering time-dependent characteristics such as creep and residual strain, are also implemented. A real-time FEM control system, which consists of a PC, a bipolar DC unit and a signal-distributing controller, is developed. The system is verified by experiments on quasi-static displacement control of connected piezoelectric actuators. The results show the possibility of highly accurate, realtime control of the actuators using the FEM.


2015 ◽  
Vol 669 ◽  
pp. 335-344 ◽  
Author(s):  
Peter Šmeringai ◽  
Miroslav Rimár ◽  
Marcel Fedák ◽  
Štefan Kuna

This paper explains the design of real-time control system for drives which use a pneumatic artificial muscles. Described is the design of hardware and software equipment, as well as design of these components involvement in the experimental facility with artificial muscles. In this paper are referred experimental measurements on the device aimed at monitoring the changes in observed PAMs characteristics caused by pressure changes in artificial muscles during their operation.


Author(s):  
Viliam Fedak ◽  
Frantisek Durovsky ◽  
Robert Uveges ◽  
Karol Kyslan ◽  
Milan Lacko

The paper deals with development and implementation of the direct and inverse kinematics to control of 6 DOF industrial robot SEF-ROBOTER SR25 by a real time control system. To obtain the angular position of each joint an iterative algorithm is applied that is developed in the Simulink program. This solution creates a basis for real time control of the robot drives utilizing features of SIEMENS SINAMICS family of frequency converters. The developed control system presents a universal platform enabling to debug any robot control algorithm and also easy to change a desired trajectory of the end effector. The equipment is suitable for testing different trajectories of the robot and is suitable also for educational purposes.


1995 ◽  
Vol 389 ◽  
Author(s):  
K. C. Saraswat ◽  
Y. Chen ◽  
L. Degertekin ◽  
B. T. Khuri-Yakub

ABSTRACTA highly flexible Rapid Thermal Multiprocessing (RTM) reactor is described. This flexibility is the result of several new innovations: a lamp system, an acoustic thermometer and a real-time control system. The new lamp has been optimally designed through the use of a “virtual reactor” methodology to obtain the best possible wafer temperature uniformity. It consists of multiple concentric rings composed of light bulbs with horizontal filaments. Each ring is independently and dynamically controlled providing better control over the spatial and temporal optical flux profile resulting in excellent temperature uniformity over a wide range of process conditions. An acoustic thermometer non-invasively allows complete wafer temperature tomography under all process conditions - a critically important measurement never obtained before. For real-time equipment and process control a model based multivariable control system has been developed. Extensive integration of computers and related technology for specification, communication, execution, monitoring, control, and diagnosis demonstrates the programmability of the RTM.


Sign in / Sign up

Export Citation Format

Share Document