Heat Transport of Casson Nanofluid Flow over a Melting Riga Plate Embedded in a Porous Medium

Author(s):  
Adeshina Taofeeq Adeosun ◽  
Jacob Abiodun Gbadeyan ◽  
Ramoshweu Solomon Lebelo

This article investigates the flow of Casson nanofluid induced by a stretching Riga plate in the presence of a porous medium. The implication of the Riga plate is to generate electromagnetohydrodynamic force which influences the fluid speed, and as well applicable in delaying boundary layer separation. The complexity of the equations governing the problem is reduced using similarity transformation. The resulting coupled nonlinear ordinary differential equations are solved by employing Chebyshev collocation scheme (CCS) and validated with Galerkin weighted residual method (GWRM). The influence of parameters, such as modified Hartmann number and melting parameter, on the nanofluid flow, heat, and mass transfer is considered. Some of the major findings include that modified Hartmann number tends to increase nanofluid flow. Also, increasing the value of melting parameter is in favor of both velocity and nanoparticle volume fraction profiles but diminishes temperature profile. The application of this work can be found in polymer synthesis, metallic processing, and electromagnetic crucible systems.

Processes ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 7
Author(s):  
Hanifa Hanif ◽  
Ilyas Khan ◽  
Sharidan Shafie ◽  
Waqar A. Khan

The present research provides a numerical investigation of two dimensional nanofluid flow over an inverted cone inside a porous medium. The model is developed to incorporate non-spherical shapes of C d T e -nanoparticles in water based fluid. Simultaneous effects of pertinent parameters like volume fraction, Reynold number, Hartmann number, porosity, Grashof number, radiation parameter and Peclet number on temperature distribution and velocity profile are studied and illustrated graphically. In addition, the corresponding computational results of Nusselt number and skin frication for regulating parameters are also presented in graphs and tables. The highest Nusselt number is observed for blade-shaped C d T e particles. Furthermore, the thermal conductivity and viscosity are also calculated for non-spherical shapes of C d T e nanoparticles. The result showed that the thermal conductivity of nanofluid with blade-shaped particles is 0.94 % and 1.93 % greater than platelet and brick type particles. The computational results for the special case are validated by comparisons with the presented results in previous studies and the results are in perfect agreement.


2021 ◽  
Vol 13 (5) ◽  
pp. 168781402110162
Author(s):  
Aisha Anjum ◽  
Sadaf Masood ◽  
Muhammad Farooq ◽  
Naila Rafiq ◽  
Muhammad Yousaf Malik

This article addresses MHD nanofluid flow induced by stretched surface. Heat transport features are elaborated by implementing double diffusive stratification. Chemically reactive species is implemented in order to explore the properties of nanofluid through Brownian motion and thermophoresis. Activation energy concept is utilized for nano liquid. Further zero mass flux is assumed at the sheet’s surface for better and high accuracy of the out-turn. Trasnformations are used to reconstruct the partial differential equations into ordinary differential equations. Homotopy analysis method is utilized to obtain the solution. Physical features like flow, heat and mass are elaborated through graphs. Thermal stratified parameter reduces the temperature as well as concentration profile. Also decay in concentration field is noticed for larger reaction rate parameter. Both temperature and concentration grows for Thermophoresis parameter. To check the heat transfer rate, graphical exposition of Nusselt number are also discussed and interpret. It is noticed that amount of heat transfer decreases with the increment in Hartmann number. Numerical results shows that drag force increased for enlarged Hartmann number.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
M. Sheikholeslami ◽  
R. Ellahi ◽  
C. Fetecau

Impact of nanofluid natural convection due to magnetic field in existence of melting heat transfer is simulated using CVFEM in this research. KKL model is taken into account to obtain properties of CuO–H2O nanofluid. Roles of melting parameter (δ), CuO–H2O volume fraction (ϕ), Hartmann number (Ha), and Rayleigh (Ra) number are depicted in outputs. Results depict that temperature gradient improves with rise of Rayleigh number and melting parameter. Nusselt number detracts with rise of Ha. At the end, a comparison as a limiting case of the considered problem with the existing studies is made and found in good agreement.


2021 ◽  
Vol 15 (1) ◽  
pp. 1013-1026
Author(s):  
M. M. Rashidi ◽  
M. T. Akolade ◽  
M. M. Awad ◽  
A. O. Ajibade ◽  
I. Rashidi

Author(s):  
Amina Manel Bouaziz ◽  
M.N. Bouaziz ◽  
A. Aziz

Free convective of nanofluid inside dispersive porous medium adjacent to a vertical plate under the effects of the zero mass nanoparticles flux condition and the thermal and solutal dispersions is studied. Buongiorno's model revised is used considering Darcy and non Darcy laminar flows, and isothermal or convective flux outer the wall. Dimensionless governing equations formulated using velocity, temperature, concentration and nanoparticle volume fraction have been solved by finite difference method that implements the 3-stage Lobatto collocation formula. The numerical data obtained with semi or full dispersions cases are compared to predictions made using the non dispersive porous medium. Taking into account the dispersions, the influence of the zero mass nanoparticles flux condition is examined to test the validity of the control active nanoparticle assumption. It is found mainly that the thermal transfers can reach more than 100% in connection with the case where of a semi-dispersion of the porous medium is applied. Realistic condition, i.e. zero mass flux should be addressed for the heat transfer rate rather than the mass transfer rate, discovered markedly different to the active condition. This signifies the importance of considering the zero nanoparticles mass flux and dispersions in the performance characterization of nanofluid flow in porous media.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sameh Elsayed Ahmed

Purpose The Galerkin finite element method (FEM) based on the characteristic-based split (CBS) scheme is applied to simulate the nanofluid flow and thermal fields inside an inclined geometry filled by a heat-generating hydrodynamically and thermally anisotropic non-Darcy porous medium using the local thermal non-equilibrium model (LTNEM). Property of the hydrodynamic anisotropy is taken in both the Forchheimer coefficient and permeability and these tools are considered as functions of inclination of the principal axes. Also, the thermal conductivity for the porous phase is assumed to be anisotropic. Design/methodology/approach The Galerkin FEM based on the CBS scheme is applied to solve the partial differential equations governing the flow and thermal fields. Findings It is noted that the net rate of the heat transfer between the nanofluid and solid phases are influenced by variations of the anisotropic properties. Also, the system is reached to the thermal equilibrium state at H > 100. Further, the maximum nanofluid temperature is reduced by 12.27% when the nanoparticles volume fraction is varied from 0% to 4%. Originality/value This paper aims to study the nanofluid flow and heat transfer characteristics inside an inclined enclosure filled with a heat-generating, hydrodynamically and thermally anisotropic porous medium using the CBS scheme. The LTNEM is considered between the nanofluid and porous phases while the local thermal equilibrium model (LTEM) between the base fluid (water) and the nanoparticles (alumina) is taken into account. The Galerkin FEM is introduced to discretize the governing system of equations. Also, examine influences of the anisotropic properties (permeability, Forchheimer terms and thermal conductivity of the porous medium), inclination angle and nanoparticles volume fraction on the net rate of the heat transfer between the nanofluid and porous phases and on the local thermal non-equilibrium state is one of the concerns of this paper.


Author(s):  
JK Madhukesh ◽  
A Alhadhrami ◽  
R Naveen Kumar ◽  
RJ Punith Gowda ◽  
BC Prasannakumara ◽  
...  

In applied physics, Riga plate was one of the trademark inventions to overcome the poor conductivity of fluids. This provided an aid to avoid the boundary layer separation, reduce the friction as well as the pressure drag of submarines. This particular study has a lot of importance in numerous manufacturing, industrial and engineering fields. The current study deals with the laminar, steady flow of a Casson hybrid nanoliquid induced by a Riga plate in the presence of a porous medium. Appropriate similarity transformations are used to reduce the fluid flow equations into a system of ordinary differential equations. Later, for these reduced equations, an effective numerical method called the fourth fifth-order Runge–Kutta–Fehlberg process with shooting technique is used to obtain the numerical solutions. The influences of involved parameters on the flow fields are demonstrated graphically. Results reveal that the velocity of the Casson hybrid nanofluid declines with an increase in the solid volume fraction and porosity parameter. The velocity gradient increases for an increase in values of the modified Hartmann number. Thermal distribution enhances with an increase in the values of Biot number as well as heat source/sink parameter.


Sign in / Sign up

Export Citation Format

Share Document