Physical insights into the heat and mass transfer in Casson hybrid nanofluid flow induced by a Riga plate with thermophoretic particle deposition

Author(s):  
JK Madhukesh ◽  
A Alhadhrami ◽  
R Naveen Kumar ◽  
RJ Punith Gowda ◽  
BC Prasannakumara ◽  
...  

In applied physics, Riga plate was one of the trademark inventions to overcome the poor conductivity of fluids. This provided an aid to avoid the boundary layer separation, reduce the friction as well as the pressure drag of submarines. This particular study has a lot of importance in numerous manufacturing, industrial and engineering fields. The current study deals with the laminar, steady flow of a Casson hybrid nanoliquid induced by a Riga plate in the presence of a porous medium. Appropriate similarity transformations are used to reduce the fluid flow equations into a system of ordinary differential equations. Later, for these reduced equations, an effective numerical method called the fourth fifth-order Runge–Kutta–Fehlberg process with shooting technique is used to obtain the numerical solutions. The influences of involved parameters on the flow fields are demonstrated graphically. Results reveal that the velocity of the Casson hybrid nanofluid declines with an increase in the solid volume fraction and porosity parameter. The velocity gradient increases for an increase in values of the modified Hartmann number. Thermal distribution enhances with an increase in the values of Biot number as well as heat source/sink parameter.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
D. R. V. S. R. K. Sastry ◽  
A. S. N. Murti ◽  
T. Poorna Kantha

The problem of heat transfer on the Marangoni convection boundary layer flow in an electrically conducting nanofluid is studied. Similarity transformations are used to transform the set of governing partial differential equations of the flow into a set of nonlinear ordinary differential equations. Numerical solutions of the similarity equations are then solved through the MATLAB “bvp4c” function. Different nanoparticles like Cu, Al2O3, and TiO2 are taken into consideration with water as base fluid. The velocity and temperature profiles are shown in graphs. Also the effects of the Prandtl number and solid volume fraction on heat transfer are discussed.


Entropy ◽  
2018 ◽  
Vol 20 (9) ◽  
pp. 668 ◽  
Author(s):  
Umer Farooq ◽  
Muhammad Afridi ◽  
Muhammad Qasim ◽  
D. Lu

The present research work explores the effects of suction/injection and viscous dissipation on entropy generation in the boundary layer flow of a hybrid nanofluid (Cu–Al2O3–H2O) over a nonlinear radially stretching porous disk. The energy dissipation function is added in the energy equation in order to incorporate the effects of viscous dissipation. The Tiwari and Das model is used in this work. The flow, heat transfer, and entropy generation analysis have been performed using a modified form of the Maxwell Garnett (MG) and Brinkman nanofluid model for effective thermal conductivity and dynamic viscosity, respectively. Suitable transformations are utilized to obtain a set of self-similar ordinary differential equations. Numerical solutions are obtained using shooting and bvp4c Matlab solver. The comparison of solutions shows excellent agreement. To examine the effects of principal flow parameters like suction/injection, the Eckert number, and solid volume fraction, different graphs are plotted and discussed. It is concluded that entropy generation inside the boundary layer of a hybrid nanofluid is high compared to a convectional nanofluid.


2017 ◽  
Vol 14 (1) ◽  
pp. 694-703 ◽  
Author(s):  
Noreen Sher Akbar ◽  
C. M Khalique ◽  
Z. H Khan

In the present article, the double-diffusive natural convection of a micropolar nanofluid over a linearly stretching sheet is discussed. The flow equations are transformed into ordinary differential equations using similarity transformations. The numerical solutions are computed using shooting technique and compared with the literature for the special case of pure fluid flow and found to be in good agreement. Graphical results are presented to illustrate the effects of various fluid flow parameters on velocity, heat transfer, nanoparticle volume fraction, salt concentration, Nusselt number, Sherwood number and skin friction coefficient for both assisting and opposing flows.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
M. Ferdows ◽  
MD. Shamshuddin ◽  
S. O. Salawu ◽  
K. Zaimi

AbstractIn the study, the steady, laminar, incompressible, convective flow of a viscous fluid over a moving plate is investigated theoretically by adopting different types of nanoparticles. Radiation, internal heat generation and viscous dissipation effects are considered in the energy modeled equation. The governing flow equations for the momentum and temperature are reduced to dimensionless form via similarity transformations. The solutions to the resultant equations alongside with the transformed boundary conditions are numerically obtained using MATLAB package bvp4c. Validation with earlier studies are done for the non-internal heat generation case for two distinct nanoparticles of type Cu-water and Al-water. Extensive visualization of flow rate and heat distributions for various emerging parameters are examined. Temperature is consistently enhanced with a rising Eckert number of both types of nanofluids, whereas it is strongly reduced with rising values of radiation term. Heat transfer coefficient is consistently increased with a nanoparticle volume fraction of high convective heat in the medium.


2019 ◽  
Vol 16 (2) ◽  
pp. 109-126 ◽  
Author(s):  
Ishrat Zahan ◽  
R Nasrin ◽  
M A Alim

A numerical analysis has been conducted to show the effects of magnetohydrodynamic (MHD) and Joule heating on heat transfer phenomenon in a lid driven triangular cavity. The heat transfer fluid (HTF) has been considered as water based hybrid nanofluid composed of equal quantities of Cu and TiO2 nanoparticles. The bottom wall of the cavity is undulated in sinusoidal pattern and cooled isothermally. The left vertical wall of the cavity is heated while the inclined side is insulated. The two dimensional governing partial differential equations of heat transfer and fluid flow with appropriate boundary conditions have been solved by using Galerkin's finite element method built in COMSOL Multyphysics. The effects of Hartmann number, Joule heating, number of undulation and Richardson number on the flow structure and heat transfer characteristics have been studied in details. The values of Prandtl number and solid volume fraction of hybrid nanoparticles have been considered as fixed. Also, the code validation has been shown. The numerical results have been presented in terms of streamlines, isotherms and average Nusselt number of the hybrid nanofluid for different values of governing parameters. The comparison of heat transfer rate by using hybrid nanofluid, Cu-water nanofluid,  TiO2 -water nanofluid and clear water has been also shown. Increasing wave number from 0 to 3 enhances the heat transfer rate by 16.89%. The enhanced rate of mean Nusselt number for hybrid nanofluid is found as 4.11% compared to base fluid.


Author(s):  
Gombi Rachappa Manohar ◽  
Puttaswamy Venkatesh ◽  
Bijjanal Jayanna Gireesha ◽  
Gosikere Kenchappa Ramesh

In the current investigation a mathematical model is simplified to explore the numerical treatment for the thermal and flow behavior in a magneto hydrodynamics Casson fluid through a micro channel by taking [Formula: see text] nanoparticles. The combined effects of temperature jump, porous medium and velocity slip are incorporated. Using the dimensionless variables one can obtain the governing differential equations thereafter resolved numerically using RKF45 method. The velocity, temperature, skin friction and Nusselt number coefficient are addressed for different pertaining parameter. The upshots of the current investigation are visualized through graphically elucidation. Out comes shows that larger values of solid volume fraction decreases both velocity and temperature field. Furthermore drag coefficient is increases for increase in magnetic parameter, also hybrid nanofluid gives more impact than nanofluid.


2021 ◽  
Vol 50 (12) ◽  
pp. 3753-3764
Author(s):  
Nurul Amira Zainal ◽  
Roslinda Nazar ◽  
Kohilavani Naganthran ◽  
Ioan Pop

Theoretical investigations of unsteady boundary layer flow gain interest due to its relatability to practical settings. Thus, this study proposes a unique mathematical model of the unsteady flow and heat transfer in hybrid nanofluid past a permeable shrinking slender cylinder. The suitable form of similarity transformations is adapted to simplify the complex partial differential equations into a solvable form of ordinary differential equations. A built-in bvp4c function in MATLAB software is exercised to elucidate the numerical analysis for certain concerning parameters, including the unsteadiness and curvature parameters. The bvp4c procedure is excellent in providing more than one solution once sufficient predictions are visible. The present analysis further observed dual solutions that exist in the system of equations. Notable findings showed that by increasing the nanoparticles volume fraction, the skin friction coefficient increases in accordance with the heat transfer rate. In contrast, the decline of the unsteadiness parameter demonstrates a downward trend toward the heat transfer performance.


Mathematics ◽  
2021 ◽  
Vol 9 (20) ◽  
pp. 2566
Author(s):  
Lioua Kolsi ◽  
Fatih Selimefendigil ◽  
Mohamed Omri

The combined effects of surface rotation and using binary nanoparticles on the phase change process in a 3D complex-shaped vented cavity with ventilation ports were studied during nanofluid convection. The geometry was a double T-shaped rotating vented cavity, while hybrid nanofluid contained binary Ag–MgO nano-sized particles. One of the novelties of the study wasthat a vented cavity was first used with the phase change–packed bed (PC–PB) system during nanofluid convection. The PC–PB system contained a spherical-shaped, encapsulated PCM paraffin wax. The Galerkin weighted residual finite element method was used as the solution method. The computations were carried out for varying values of the Reynolds numbers (100 ≤ Re ≤ 500),rotational Reynolds numbers (100 ≤ Rew ≤ 500), size of the ports (0.1L1 ≤ di ≤ 0.5L1), length of the PC–PB system (0.4L1 ≤ L0 ≤ L1), and location of the PC–PB (0 ≤ yp ≤ 0.25H). In the heat transfer fluid, the nanoparticle solid volume fraction amount was taken between 0 and 0.02%. When the fluid stream (Re) and surface rotational speed increased, the phase change process became fast. Effects of surface rotation became effective for lower values of Re while at Re = 100 and Re = 500; full phase transition time (tp) was reduced by about 39.8% and 24.5%. The port size and nanoparticle addition in the base fluid had positive impacts on the phase transition, while 34.8% reduction in tp was obtained at the largest port size, though this amount was only 9.5%, with the highest nanoparticle volume fraction. The length and vertical location of the PC–PB system have impacts on the phase transition dynamics. The reduction and increment amount in the value of tp with varying location and length of the PC–PB zone became 20% and 58%. As convection in cavities with ventilation ports are relevant in many thermal energy systems, the outcomes of this study will be helpful for the initial design and optimization of many PCM-embedded systems encountered in solar power, thermal management, refrigeration, and many other systems.


2021 ◽  
Vol 25 (Spec. issue 2) ◽  
pp. 279-285
Author(s):  
Prvaeen Dadheech ◽  
Priyanka Agrawal ◽  
Anil Sharma ◽  
Kottakkaran Nisar ◽  
Sunil Purohit

In the present study Al2O3-SiO2-TiO2/C2H6O2 modified nanofluid flow over a stretching surface is considered with imposed inclined magnetic field. Three different suspended nanoparticles in a base fluid are considered in this next generation of hybrid nanofluid called as modified nanofluid. Ethanol glycol is taken as a base fluid with suspension of three nanoparticles of Al2O3, SiO2, and TiO2. The mathematical model of the flow is encountered by Runga-Kutta fourth order method using appropriate similarity transformations. As a key result it is observed that the capacity of heat transportation of modified nanofluid is higher as compared with nanofluids and hybrid nanofluids. Numerical solutions with graphical representation are presented. With increased inclined angle, parameter of magnetic field, and volume friction parameter a decrement in velocity field has been noticed for modified nanofluid.


Author(s):  
Susheela Chaudhary ◽  
Kiran Kunwar Chouhan ◽  
Santosh Chaudhary

Present study numerically investigates a two dimensional steady laminar boundary layer nanofluid flow of single-wall carbon nanotubes (SWCNTs) immersed into kerosene oil, due to a linearly stretched sheet. Flow is subjected to the slip boundary condition and suction/injection effects. Employing suitable similarity transformations, governing PDEs of the arising problem are converted into coupled nonlinear non-dimensional ordinary differential equations. A set of obtained ODEs with assisting boundary conditions is solved numerically by applying finite element method (FEM). Effect of pertinent factors, velocity slip parameter, suction/injection parameter and solid volume fraction parameter on non-dimensional velocity and temperature profiles are characterized graphically. In addition, physical emerging parameters, local Nusselt’s number and local skin friction coefficient are computed and presented via table. Furthermore, derived numerical values of shear stress and heat flux at the surface are compared with previously published results.


Sign in / Sign up

Export Citation Format

Share Document