Highly active photocatalyst BixTiyVxO4x+2y(x≈y) for oxygen evolution under visible-light illumination

2008 ◽  
Vol 245 (9) ◽  
pp. 1807-1815 ◽  
Author(s):  
Haimei Liu ◽  
Akihito Imanishi ◽  
Ryuhei Nakamura ◽  
Yoshihiro Nakato
2016 ◽  
Vol 42 ◽  
pp. 73-79
Author(s):  
Fang Li Chi ◽  
Guo Dong Zhou ◽  
Biao Song ◽  
Bin Yang ◽  
Yao Hui Lv ◽  
...  

Visible light responsive CoTiO3 nanoparticles with average diameter of 100 nm were successfully synthesized by sol-gel method and were firstly applied to catalytic activation of peroxymonosulfate (PMS) for degradation of organic pollutants (Rhodamine B (RhB)). Photocatalytic experiments illustrated that CoTiO3 nanoparticles reveal good photocatalytic activity and excellent ability to activate PMS, the synergistic effect of visible light photocatalysis and sulfate radical generated from activated PMS can degradate RhB efficiently. Besides, CoTiO3 nanoparticles maintain their high photocatalytic and activation efficiency after three times recycling.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1399
Author(s):  
Congcong Xing ◽  
Yu Zhang ◽  
Yongpeng Liu ◽  
Xiang Wang ◽  
Junshan Li ◽  
...  

The photodehydrogenation of ethanol is a sustainable and potentially cost-effective strategy to produce hydrogen and acetaldehyde from renewable resources. The optimization of this process requires the use of highly active, stable and selective photocatalytic materials based on abundant elements and the proper adjustment of the reaction conditions, including temperature. In this work, Cu2O-TiO2 type-II heterojunctions with different Cu2O amounts are obtained by a one-pot hydrothermal method. The structural and chemical properties of the produced materials and their activity toward ethanol photodehydrogenation under UV and visible light illumination are evaluated. The Cu2O-TiO2 photocatalysts exhibit a high selectivity toward acetaldehyde production and up to tenfold higher hydrogen evolution rates compared to bare TiO2. We further discern here the influence of temperature and visible light absorption on the photocatalytic performance. Our results point toward the combination of energy sources in thermo-photocatalytic reactors as an efficient strategy for solar energy conversion.


2019 ◽  
Vol 33 (23) ◽  
pp. 1950270 ◽  
Author(s):  
Mengfei Lu ◽  
Qiaoqiao Li ◽  
Chengliang Zhang ◽  
Xiaoxing Fan ◽  
Haifeng Shi

In this study, a series of molybdenum-doped ultrathin BiVO4 nanosheets (Mo-BVO) were successfully synthesized by a facile hydrothermal method. The results indicated that Mo-BVO nanosheets exhibited high photocatalytic efficiency of methyl blue (MB) degradation under visible-light irradiation. Particularly, 1% Mo-BVO exhibited an optimum photo-degradation rate of more than 97% within 60 min under visible-light illumination, which was approximately 3.8 times greater than that of pure BVO. The experimental characterizations and DFT calculations manifested that the ultrathin BVO nanosheets and Mo doping were beneficial to provide abundant active sites, suppress the photoinduced charge recombination and extend the absorption visible-light range, thus enhancing the photocatalytic performance toward MB degradation. Additionally, the photocatalytic reaction mechanism was proposed based on the reactive species trapping experiments. This study was expected to design a highly active photocatalyst for pollution decomposition by modulating the photocatalytic properties and electronic band structure.


2015 ◽  
Vol 19 (6) ◽  
pp. 512-520 ◽  
Author(s):  
Nikolaos Karanasios ◽  
Jenia Georgieva ◽  
Eugenia Valova ◽  
Stephan Armyanov ◽  
Georgios Litsardakis ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3948
Author(s):  
Lingfang Qiu ◽  
Zhiwei Zhou ◽  
Mengfan Ma ◽  
Ping Li ◽  
Jinyong Lu ◽  
...  

Novel visible-light responded aluminosilicophosphate-5 (SAPO-5)/g-C3N4 composite has been easily constructed by thermal polymerization for the mixture of SAPO-5, NH4Cl, and dicyandiamide. The photocatalytic activity of SAPO-5/g-C3N4 is evaluated by degrading RhB (30 mg/L) under visible light illumination (λ > 420 nm). The effects of SAPO-5 incorporation proportion and initial RhB concentration on the photocatalytic performance have been discussed in detail. The optimized SAPO-5/g-C3N4 composite shows promising degradation efficiency which is 40.6% higher than that of pure g-C3N4. The degradation rate improves from 0.007 min−1 to 0.022 min−1, which is a comparable photocatalytic performance compared with other g-C3N4-based heterojunctions for dye degradation. The migration of photo-induced electrons from g-C3N4 to the Al site of SAPO-5 should promote the photo-induced electron-hole pairs separation rate of g-C3N4 efficiently. Furthermore, the redox reactions for RhB degradation occur on the photo-induced holes in the g-C3N4 and Al sites in SAPO-5, respectively. This achievement not only improves the photocatalytic activity of g-C3N4 efficiently, but also broadens the application of SAPOs in the photocatalytic field.


Applied Nano ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 148-161
Author(s):  
Katerina Govatsi ◽  
Aspasia Antonelou ◽  
Labrini Sygellou ◽  
Stylianos G. Neophytides ◽  
Spyros N. Yannopoulos

The rational synthesis of semiconducting materials with enhanced photoelectrocatalytic efficiency under visible light illumination is a long-standing issue. ZnO has been systematically explored in this field, as it offers the feasibility to grow a wide range of nanocrystal morphology; however, its wide band gap precludes visible light absorption. We report on a novel method for the controlled growth of semiconductor heterostructures and, in particular, core/sheath ZnO/MoS2 nanowire arrays and the evaluation of their photoelectrochemical efficiency in oxygen evolution reaction. ZnO nanowire arrays, with a narrow distribution of nanowire diameters, were grown on FTO substrates by chemical bath deposition. Layers of Mo metal at various thicknesses were sputtered on the nanowire surface, and the Mo layers were sulfurized at low temperature, providing in a controlled way few layers of MoS2, in the range from one to three monolayers. The heterostructures were characterized by electron microscopy (SEM, TEM) and spectroscopy (XPS, Raman, PL). The photoelectrochemical properties of the heterostructures were found to depend on the thickness of the pre-deposited Mo film, exhibiting maximum efficiency for moderate values of Mo film thickness. Long-term stability, in relation to similar heterostructures in the literature, has been observed.


2021 ◽  
pp. 139794
Author(s):  
Li Zhang ◽  
Xiaoming Bai ◽  
Gunagyu Zhao ◽  
Xiaojie Shen ◽  
Yufei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document