Synthesis and Tribological Properties of TiSe2 Nanoparticles

2017 ◽  
Vol 45 ◽  
pp. 34-41 ◽  
Author(s):  
Qin Shi ◽  
Jing Xu ◽  
Li Feng Dang ◽  
Jun Chen ◽  
Guo Gang Tang ◽  
...  

TiSe2 nanobelts/nanoplates have been successfully fabricated through a facile and environment-friendly pressureless sintered process using micro-sized Ti and Se elements as raw materials. The morphology and structure of the as-prepared TiSe2 products were investigated by X-ray diffractometer, scanning electron microscopy, transmission electron microscopy and high resolution transmission electron microscopy. The experimental results indicated that the morphology of TiSe2 products were strongly dependent on the reaction temperature and reaction time. As the reaction temperature was set at 600°C and 800°C, long belts-like and plates-like structures of as-prepared TiSe2 products could be observed, respectively. However, a mixture of nanobelts and nanoplates could be obtained at a reaction temperature of 700°C. It was also found that the reaction time played a crucial role in obtaining the homogeneous distribution nanoparticles, therefore, reasonable reaction process and formation mechanisms of as-prepared TiSe2 nanoparticles were proposed. Moreover, the tribological properties of the TiSe2 nanobelts/nanoplates were investigated. The test results showed that the addition of TiSe2 nanoparticles could improve the tribological properties of base oil. Furthermore, the friction coefficient of base oil containing TiSe2 nanoplates was lower and more stable than those of TiSe2 nanobelts and pure base oil.

2007 ◽  
Vol 22 (6) ◽  
pp. 1472-1478 ◽  
Author(s):  
Youjin Zhang ◽  
Tao Cheng ◽  
Qixiu Hu ◽  
Zhiyong Fang ◽  
Kaidong Han

Novel slight yellow CeO2single/multiwall hollow microspheres were synthesized by the hydrothermal method without any surfactant and characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), field-emission scanning electron microscopy (FESEM), and x-ray photoelectron spectra (XPS). The results showed that the products were CeO2single/multiwall hollow microspheres, the shells of which were composed of CeO2nanoparticles with a mean size of 70 nm. The effect of the preparation conditions, the reaction temperature, the reaction time, and the molar ratios of urea to Ce(NO3)3·6H2O on the morphology of the products, was investigated. The optimal preparation conditions are determined as follows: the reaction temperature of 230 °C, the reaction time of 6 to 10 h, and the molar ratios of urea to Ce(NO3)3·6H2O of 3:1 to 6:1. The formation mechanism of CeO2single/multiwall hollow microspheres was proposed. The ultraviolet-visible (UV-VIS) diffuse reflectance spectra of the samples were measured. The results showed that the absorption edges of the samples were red-shifted compared with that of bulk CeO2, and that the red-shift of the absorption edges and the yellow of the samples enhanced with increasing the yield of CeO2single/multiwall hollow microspheres. The catalytic activity and the recycling performance of the sample on CO oxidation were tested and theT100%(the temperature at which CO 100% conversion) was 230 °C in the first run and decreased by 270 and 205 °C compared with that of bulk CeO2and CeO2nanocrystal, respectively.


2018 ◽  
Vol 70 (3) ◽  
pp. 512-518 ◽  
Author(s):  
Alaa Mohamed ◽  
Mohamed Hamdy ◽  
Mohamed Bayoumi ◽  
Tarek Osman

Purpose To enhance the tribological properties of nanogrease, one of the new technologies was used to synthesize a nanogrease having carbon nanotubes (CNTs) nanoparticles (NPs) with different concentrations. The microstructures of the synthesized NPs were characterized and evaluated by x-ray diffraction spectroscopy (XRD) and transmission electron microscopy (TEM). Tribological properties of the nanogrease were evaluated using a four-ball tester. The worn surface of four steel balls was investigated by scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDX). Design/methodology/approach Grease was dissolved in chloroform (10 Wt.%), at 25 °C for 1 h. In parallel, functionalized CNTs with different volume concentrations (0.5, 1, 2 and 3 Wt.%) were dispersed in N, N-dimethylformamide. The mixture was stirred for 15 min and then sonicated (40 kHz, 150 W) for 30 min. After that, the mixture was added to the grease solution and magnetically stirred for 15 min and then sonicated for 2 h. Findings The results suggested that CNTs can enhance the antiwear and friction properties of nanogrease at 0.5 Wt.% CNTs to about 57 and 48 per cent, respectively. In addition, the weld load of the base oil containing 0.5 Wt.% CNTs was improved by 17 per cent compared with base grease. Originality/value This work describes the inexpensive and simple fabrication of nanogrease for improving the properties of lubricants, which improve power efficiency and extend lifetimes of mechanical equipment.


2006 ◽  
Vol 05 (04n05) ◽  
pp. 663-669 ◽  
Author(s):  
GANGQIANG ZHU ◽  
HONGYAN MIAO ◽  
GUOQIANG TAN ◽  
YUN LIU ◽  
AO XIA

Potassium bismuth titanate nanoparticles were prepared by the hydrothermal method using Ti ( C 4 H 9 O )4 and Bi ( NO 3)3·5 H 2 O as raw materials in alkaline solution at temperatures of 160–200°C. The crystal phase, particle size, morphology and dispersion of the particles were investigated by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the particles with sizes of about 50–100 nm in diameter are well-dispersed K 0.5 Bi 0.5 TiO 3 (KBT) crystals of tetragonal structure, and the alkaline concentration and the temperature of solutions have great effects on the phase composition and morphology of the resultant particles. We could gain the KBT phase of high purity when the concentration of KOH is about 8–12 M and the reaction temperature is about 170–180°C.


2012 ◽  
Vol 184-185 ◽  
pp. 1138-1141
Author(s):  
Yan Biao Zhang ◽  
Xiao Hui Zhang ◽  
Hong Zong Yin

In this study, we prepared gold nanoparticles in micro-emulsion and found the optimum ratio of micro-emulsion for preparing gold nanoparticles. We reported a new stabilizer for preparing gold nanoparticles in aqueous and found the optimum mass ratio between the stabilizer and chlorauric acid. All gold nanoparticles prepared by these two methods were characterized by transmission electron microscopy, ultraviolet-visible spectrophotometer and synchronous light-scattering spectrophotometer. The results of transmission electron microscopy showed that the diameter range of gold nanoparticles prepared in micro-emulsion was 5~10 nm, and that in aqueous was 10~15 nm. They all had homogeneous distribution and dense structures.


2020 ◽  
Author(s):  
Mei Wang ◽  
Asher Leff ◽  
Yue Li ◽  
Taylor Woehl

Colloidal synthesis of alloyed multimetallic nanocrystals with precise composition control remains a challenge and a critical missing link in theory-driven rational design of functional nanomaterials. Liquid phase transmission electron microscopy (LP-TEM) enables directly visualizing nanocrystal formation mechanisms that can inform discovery of design rules for colloidal multimetallic nanocrystal synthesis, but it remains unclear whether the salient chemistry of the flask synthesis is preserved in the extreme electron beam radiation environment during LPTEM. Here we demonstrate controlled in situ LP-TEM synthesis of alloyed AuCu nanoparticles while maintaining the molecular structure of electron beam sensitive metal thiolate precursor complexes. Ex situ flask synthesis experiments showed that nearly equimolar AuCu alloys formed from heteronuclear metal thiolate complexes, while gold-rich alloys formed in their absence. Systematic dose rate-controlled in situ LP-TEM synthesis experiments established a range of electron beam synthesis conditions that formed alloyed AuCu nanoparticles with similar alloy composition, random alloy structure, and particle size distribution shape as those from ex situ flask synthesis, indicating metal thiolate complexes were preserved under these conditions. Reaction kinetic simulations of radical-ligand reactions revealed that polymer capping ligands acted as effective hydroxyl radical scavengers during LP-TEM synthesis and prevented metal thiolate oxidation at low dose rates. In situ synthesis experiments and ex situ atomic scale imaging revealed that a key role of metal thiolate complexes was to prevent copper atom oxidation and facilitate formation of prenucleation cluster intermediates. This work demonstrates that complex ion precursor chemistry can be maintained during LP-TEM imaging, enabling probing nanocrystal formation mechanisms with LP-TEM under reaction conditions representative of ex situ flask synthesis.


2020 ◽  
Author(s):  
Zsófia Pálos ◽  
Péter Pekker ◽  
Mihály Pósfai ◽  
Thomas Pieter Lange ◽  
Nóra Liptai ◽  
...  

<p>Transmission electron microscopy (TEM) is a powerful, yet scarcely used technique when it comes to investigating mantle minerals and fluid inclusions. It is capable to collect structural information of the studied mineral, its precise chemical composition, and makes nanofeatures visible, such as dislocations and nano-inclusions.</p><p>In this study TEM and STEM (scanning transmission electron microscopy) measurements were carried out on a set of ortho- and clinopyroxene samples from central and marginal localities of Carpathian Pannonian region (CPR), where Plio-Pleistocene alkaline basalt volcanism sampled the lithospheric mantle retrieving lithospheric mantle xenoliths. Objective of the study was to constrain the presence and formation mechanisms of sub-microscopic occurrence of pargasitic amphibole.</p><p>The detailed investigation of pargasite in the upper mantle is rather timely, because its presence may be the major cause for the rheologic contrast experienced between the lithosphere and the asthenosphere [1], [2]. The nominally anhydrous minerals’ (NAMs, as ortho- and clinopyroxene) structural hydroxyl [3] content or volatiles in fluid inclusions could lead to formation of pargasite [4]. In addition, pargasite could form interstitially during metasomatic intereactions.</p><p>Our observations so far suggest that hydrous silicate formation as sub-solidus exsolution in the central CPR may not have taken place. Ordering of the Ca forming Ca-rich and Ca-poor domains in an orthopyroxene grain was identified. Precursors of H<sup>+</sup> diffusion were also recorded, such as dislocations and nanosized fluid inclusions. Diffusion of H<sup>+</sup> could be active in the lattice scale through the disclinations along subgrain boundaries [3], [5] or dislocations in the host mineral along the boundary of nanoscale fluid inclusions [6], [7]. Clinopyroxene-amphibole phase boundary has been prepared by focused ion beam (FIB) milling technique from the marginal area of CPR. The chemical composition of the amphibole lamella provides evidence that the H<sub>2</sub>O content of the nearby fluid inclusion migrated into the host clinopyroxene producing an amphibole lamella growing along the ‘c’ crystallographic axis [4].</p><p>Observations of the boundary of clinopyroxene and amphibole confirm that the amphibole octahedral layers penetrate the clinopyroxene structure. The precise nanoscale measurements (STEM mapping) of chemical composition of both the host and the lamellae can lead to profound implications on the original composition of the studied fluid inclusions.</p><p>[1] Green, D. H., Hibberson, W. O., Kovács, I. J., & Rosenthal, A. (2010). <em>Nature</em>, 467(7314), 448–451.</p><p>[2] Kovács, I. J., Lenkey, L., Green, D. H., Fancsik, T., Falus, G., Kiss, J., Orosz, L., Angyal, J., Vikor, Zs. (2017). <em>Acta Geodaetica et Geophysica</em>, 52, 183–204.</p><p>[3] Liptai, N., Kovács, I.J., Lange, T.P., Pálos, Zs., Berkesi, M., Szabó, Cs., Wesztergom, V. (2019). <em>Goldschmidt Abstracts</em>, 2019 1981.</p><p>[4] Lange, T.P., Liptai, N., Patkó, L., Berkesi, M., Kesjár, D., Szabó, Cs., Kovács, I. J. (2019). 25th European Current Research on Fluid Inclusions (ECROFI) , <em>Abstract Series</em>, 68.</p><p>[5] Demouchy, S., & Bolfan-Casanova, N. (2016). <em>Lithos</em>, 240–243, 402–425.</p><p>[6] Bakker, R. J., & Jansen, J. B. H. (1994). <em>Contributions to Mineralogy and Petrology</em>, 116, 7–20.</p><p>[7] Viti, C., & Frezzotti, M. L. (2000). <em>American Mineralogist</em>, 85(10), 1390–1396.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Anish Stephen ◽  
Sankar Seethalakshmi

This paper is the first of its kind for development of rapid and ecofriendly method for synthesis of silver nanoparticles from aqueous solution of silver nitrate using the flavonoid “hesperidin” and optimization of the methodology. There is formation of stable spherical silver nanoparticles in the size range of 20–40 nm. Optimization of methodology in terms of concentration of reactants and pH of the reaction mixture reduced the reaction time for silver nanoparticle formation to 2 mins. Silver nanoparticles (AgNPs) were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). UV-vis spectroscopy derived spectrum demonstrated a peak of 430 nm which corresponds to the plasmon absorbance of silver nanoparticles. Transmission electron microscopy revealed spherical shaped silver nanoparticles in the size range of 20–40 nm.


2012 ◽  
Vol 624 ◽  
pp. 59-62 ◽  
Author(s):  
Cai Xia Li ◽  
Jun Guo ◽  
Danyu Jiang ◽  
Qiang Li

In this paper, employing Cu(AC)2•H2O, SnCl2•2H2O and thiourea as raw materials, the composites of graphene/Cu2SnS3 quantum dots (QDs) were prepared simply and quickly using the hydrothermal method. Meanwhile, the separate Cu2SnS3 QDs were also synthesized in the same way. The as-obtained Cu2SnS3 QDs and composites’ phase structures were analyzed and characterized by powder X-ray diffraction (XRD), and the results indicated that the size of the Cu2SnS3 QDs in the composites were less than that of the separate Cu2SnS3 QDs. At the same time, their morphologies were also observed and cross-confirmed by Transmission Electron Microscopy (TEM), and the measurements manifested that Cu2SnS3 QDs were uniformly dispersed on the surface of the graphene, while the separate Cu2SnS3 QDs have obvious glomeration. In addition to this, elemental analysis was also made to verify the existence of Cu2SnS3 on the surface of graphene.


2001 ◽  
Vol 7 (S2) ◽  
pp. 332-333
Author(s):  
W. Tian ◽  
J. C. Jiang ◽  
X. Q. Pan

Nonorthogonal twinings have commonly been observed in perovskite oxides such as SrTi03 and BaTi03. Among them, the ﹛111﹜ Σ3 type twining exists with a relative large amount of population and has been extensively studied. By combining quantitative high resolution transmission electron microscopy (HRTEM) and spatially resolved electron energy loss spectroscopy (EELS), one was able to determine the atomic structure of the ﹛111﹜Σ3 twin boundary in these oxides.[l] On the other hand, nonorthogonal twinings in SrRuO3 have been much less studied. SrRu03, a ternary ruthenium metal oxide, has a perovskite-compatible structure and exhibits low electrical resistivity (10-4 Ω•cm), showing an unparallel technique importance in microelectronic applications. Since the properties of material strongly depend on the microstructure and defect configurations, it is important to study the twining structures and their formation mechanisms in SrRuO3 thin films.Transmission electron microscopy (TEM) was used to study the SrRuO3 thin films grown on (001) LaAlO3 by 90° off-axis rf sputtering.


2004 ◽  
Vol 449-452 ◽  
pp. 273-276 ◽  
Author(s):  
Ki Hyun Kim ◽  
Young Gab Chun ◽  
Byung Ok Park ◽  
Kyung Hoon Yoon

Chalcopyrite CuInSe 2 (CIS) and CuInGaSe 2</sub(CIGS) nanoparticles were directly synthesized by a solvothemal route in an autoclave with alkylamine as a solvent. The rod-like CIS nanoparticles with widths of 5-10 nm and lengths of 10-30 nm were obtained at 180°C for 36 hour whereas spherical nanoparticles with diameter in the range of 10-80 nm were observed at 200- 250 °C for 36 hour. A morphology change from spherical to rod-like CIS nanoparticles was observed at 190 °C as reaction time increased from 36 to 60 hour. The formation of the rod-like nanoparticles in diethylamine, without double N-chelation, was explained by the SLS (Solution- Liquid-Solid) mechanism. Spherical CIGS nanoparticles with diameter in the range of 30-80 nm were obtained in ethylenediamine at 280 °C for 14 hour. The products were characterized by x-ray diffraction (XRD), transmission electron microscopy (TEM) and high-resolution scanning electron microscopy (HRSEM).


Sign in / Sign up

Export Citation Format

Share Document