Fatigue Studies of FRP Composite Decks at Extreme Environmental Conditions

2004 ◽  
Vol 261-263 ◽  
pp. 1301-1306 ◽  
Author(s):  
S.C. Kwon ◽  
P.K. Dutta ◽  
Yun Hae Kim ◽  
Soo Hyun Eum ◽  
Dong Hyuk Shin ◽  
...  

A summary of the experimental fatigue characterization of FRP composite bridge decks at two extreme temperatures [-30 ° C (-22 ° F) and 50 ° C (122 ° F)] is presented. Each deck was initially subjected to one million wheel load cycles at low temperature and another one million cycles at high temperature [1,2]. The results presented in this paper correspond to the fatigue response of each deck for four million load cycles at low temperature and another four million cycles at high temperature. Thus, the each deck was subjected to a total of ten million cycles. Progressive degradation in stiffness with cycling was noted for each deck. Comparisons of responses were made between the different FRP composite deck configurations and materials.

2001 ◽  
Vol 54 (4) ◽  
pp. 427-444 ◽  
Author(s):  
Rigoberto Burgueño ◽  
Vistasp M. Karbhari ◽  
Frieder Seible ◽  
Robert T. Kolozs

2015 ◽  
Vol 50 (7) ◽  
pp. 562-570 ◽  
Author(s):  
Marcela Tonini Venturini ◽  
Vanderlei da Silva Santos ◽  
Eder Jorge de Oliveira

Abstract: The objective of this work was to define procedures to assess the tolerance of cassava genotypes to postharvest physiological deterioration (PPD) and to microbial deterioration (MD). Roots of six cassava genotypes were evaluated in two experiments, during storage under different environmental conditions: high temperature and low soil moisture; or low temperature and high soil moisture. Roots were treated or not with fungicide (carbendazim) before storage. Genotype reactions to MD and PPD were evaluated at 0, 2, 5, 10, 15, 20, and 30 days after harvest (DAH), in the proximal, medial, and distal parts of the roots. A diagrammatic scale was proposed to evaluate nonperipheral symptoms of PPD. Fungicide treatment and root position did not influence PPD expression; however, all factors had significant effect on MD severity. Genotypes differed as to their tolerance to PPD and MD. Both deterioration types were more pronounced during periods of higher humidity and lower temperatures. The fungicide treatment increased root shelf life by reducing MD severity up to 10 DAH. Whole roots showed low MD severity and high PPD expression up to 10 DAH, which enabled the assessment of PPD without significant interference of MD symptoms during this period.


Genetika ◽  
2012 ◽  
Vol 44 (3) ◽  
pp. 499-512 ◽  
Author(s):  
Novo Przulj ◽  
Vojislava Momcilovic

Environmental conditions in the Pannonian zone can be characterized with moderate high temperature and partially water deficit during grain filling of spring barley, although low temperature and water deficit are possible also in period till anthesis. This study was conducted to evaluate the variation of the duration of the period from emergence to anthesis (VP), duration of grain filling period (GFP), plant height (PH), spikes number m-2 (SN), grains number spike-1 (GN), thousand grains weight (GW) and yield (YIL) in spring two-rowed barley in conditions of the Pannonian zone. All three factors; genotype, environment and the interaction GxY affected the studied traits. Average VP was 777 GDD, GFP 782 GDD, PH 78 cm, SN 523, GN 28.2, GW 43.2 g and YIL 6.26 t ha-1. Variation across varieties was higher than across growing seasons. Heritability varied from 0.66 for YIL to 0.94 for VP and GFP. This study confirmed that a sufficiently large genetic variability must be base for selecting appropriate varieties for the Pannonian zone conditions. In order to determine high yielding and quality barley extensive research in relation to breeding, variety choice for production and growing practice must be done.


1996 ◽  
Vol 457 ◽  
Author(s):  
Lin-chiuan Yan ◽  
Levi T. Thompson

ABSTRACTNew methods have been developed for the synthesis of high surface area cation-substituted hexaaluminates. These materials were prepared by calcining high temperature (ethanol extraction) or low temperature (CO2 extraction) aerogels at temperatures up to 1600°C. Cation-substituted hexaaluminates have emerged as promising catalysts for use in high temperature catalytic combustion. In comparing unsubstituted and cation-substituted hexaaluminates, we found that the phase transformations were much cleaner for the cation-substituted materials. BaCO3 and BaAl2O4 were intermediates during transformation of the unsubstituted materials, while the cation-substituted materials transformed directly from an amorphous phase to crystalline hexaaluminate. Moreover, the presence of substitution cations caused the transformation to occur at lower temperatures. Mn seems to be a better substitution cation than Co since the Mn-substituted materials exhibited higher surface areas and better heat resistances than the Co-substituted materials. The low temperature aerogel-derived materials possessed quite different characteristics from the high temperature aerogel-derived materials. For example, phase transformation pathways were different.


2019 ◽  
Vol 187 (1) ◽  
pp. 17-20
Author(s):  
Andrew Villanueva ◽  
Braden Goddard

Abstract While it is known that temperatures above 100°C have an effect on the reported dose of a TLD, it is less widely known what the susceptibility is to temperatures below 100°C, temperatures humans could reasonably expect to be exposed to. With the expanding nuclear industry in climates with more extreme temperatures, (e.g. United Arab Emirates and Saudi Arabia) the effect on a TLD if left on a dashboard of a car need to be evaluated. This research experimentally determined the extent of this thermal susceptibility by testing a range of high temperatures, 40°C – 90°C. The experimental results found that there is a statistically significant reduction in TLD-100H (natLiF:Mg,Cu,P) light output for TLDs there were exposed to temperatures as low as 40°C for 8 hour durations and 50°C for 2 hour durations. There is statistical difference in TLD-100H light output for elevated temperature durations of 8 hours compared to 24 hours.


2015 ◽  
Vol 134 ◽  
pp. 441-448 ◽  
Author(s):  
Jie Xu ◽  
Feng Zhao ◽  
Qinghua Guo ◽  
Guangsuo Yu ◽  
Xia Liu ◽  
...  

HortScience ◽  
1995 ◽  
Vol 30 (4) ◽  
pp. 750E-750
Author(s):  
William J. Bramlage ◽  
Sarah A. Weis

Preharvest environmental conditions apparently determine susceptibility of apples to postharvest scald development. Cool temperature, as hours below 10C, can greatly reduce susceptibility, but greater than 30C appears to enhance it. These effects appear to interact, because a high-temperature episode can cause loss of some low-temperature benefit. Shading of fruit increases their scald susceptibility and preharvest light conditions, along with preharvest rainfall, appear to be factors in scald susceptibility in New England. Fruit maturation reduces scald susceptibility. We are constructing models of contributions of these variables to scald susceptibility of fruit grown under different environmental conditions, and in this the relative importance of these variables is being evaluated.


2021 ◽  
Vol 9 (10) ◽  
pp. 2161
Author(s):  
Bowen Huang ◽  
Xiang Zhang ◽  
Chongming Wang ◽  
Changming Bai ◽  
Chen Li ◽  
...  

High temperature is a risk factor for vibriosis outbreaks. Most vibrios are opportunistic pathogens that cause the mortality of aquatic animals at the vibrio optimal growth temperature (~25 °C), whereas a dominant Vibrio kanaloae strain SbA1-1 is isolated from natural diseased ark clams (Scapharca broughtonii) during cold seasons in this study. Consistent symptoms and histopathological features reappeared under an immersion infection with SbA1-1 performed at 15 °C. The pathogenicity difference of SbA1-1 was assessed under different temperatures (15 °C and 25 °C). The cumulative mortality rates of ark clams were significantly higher at the low temperature (15 °C) than at the high temperature (25 °C); up to 98% on 16th day post SbA1-1 infection. While the growth ratio of SbA1-1 was retarded at the low temperature, the hemolytic activity and siderophores productivity of SbA1-1 were increased. This study constitutes the first isolation of V. kanaloae from the natural diseased ark clams (S. broughtonii) in cold seasons and the exposition of the dissimilar pathogenicity of SbA1-1 at a different temperature. All the above indicates that V. kanaloae constitutes a threat to ark clam culture, especially in cold seasons.


Sign in / Sign up

Export Citation Format

Share Document