The Study of Self-Propagating High-Temperature Synthesis of TiC-Al2O3/Fe Composites from Natural Ilmenite

2007 ◽  
Vol 280-283 ◽  
pp. 1103-1106 ◽  
Author(s):  
Zheng Guang Zou ◽  
Jin Li Li ◽  
Yi Wu

In the paper, natural ilmenite (FeTiO3) was used as the main green material to synthesize TiC-Al2O3/Fe composite powder by Self-propagating High-temperature Synthesis (SHS) technology and densified TiC-Al2O3/Fe composites were prepared in a vacuum hot-pressoven. The reaction mechanism in the synthesis process was studied through theoretical thermodynamical analysis and experiment research .The effect of different synthesis conditions on the products was discussed. The relations among synthesis conditions,sintering conditions, phases composition, microstructure and properties of composites were also studied in details. A new way to synthesize the advanced TiC-Al2O3/Fe composites with relatively lower cost was practiced.

2021 ◽  
Vol 11 (5) ◽  
pp. 2426
Author(s):  
Vladimir Promakhov ◽  
Alexey Matveev ◽  
Nikita Schulz ◽  
Mikhail Grigoriev ◽  
Andrey Olisov ◽  
...  

Currently, metal–matrix composite materials are some of the most promising types of materials, and they combine the advantages of a metal matrix and reinforcing particles/fibres. Within the framework of this article, the high-temperature synthesis of metal–matrix composite materials based on the (Ni-Ti)-TiB2 system was studied. The selected approaches make it possible to obtain composite materials of various compositions without contamination and with a high degree of energy efficiency during production processes. Combustion processes in the samples of a 63.5 wt.% NiB + 36.5 wt.% Ti mixture and the phase composition and structure of the synthesis products were researched. It has been established that the synthesis process in the samples proceeds via the spin combustion mechanism. It has been shown that self-propagating high-temperature synthesis (SHS) powder particles have a composite structure and consist of a Ni-Ti matrix and TiB2 reinforcement inclusions that are uniformly distributed inside it. The inclusion size lies in the range between 0.1 and 4 µm, and the average particle size is 0.57 µm. The obtained metal-matrix composite materials can be used in additive manufacturing technologies as ligatures for heat-resistant alloys, as well as for the synthesis of composites using traditional methods of powder metallurgy.


2021 ◽  
Author(s):  
Yao Wang ◽  
Ning Guo ◽  
Yanmei Xin ◽  
Jing Li ◽  
Ruizhuo Ouyang ◽  
...  

Most praseodymium-doped red-emitting phosphors need high-temperature synthesis conditions with reducing atmosphere. The niobate matrix selected in this paper provides sufficient electron-rich-site environment for praseodymium through charge migration, and praseodymium can...


2020 ◽  
Vol 15 (4) ◽  
pp. 27-32
Author(s):  
Irina V. Milyukova ◽  
Marina P. Boronenko

The work is devoted to the technology for the reduction of molybdenum from oxides by the method of self-propagating high-temperature synthesis in the MoO3 AI system with the addition of aluminum. The experiment was carried out in two modes: in a reactor at different pressures without preliminary heating and in a furnace in air until the initiation of the SH-synthesis process. Samples of molybdenum metal were obtained in different synthesis modes. X-ray phase and X-ray spectral analysis showed that molybdenum is the main phase in the synthesized samples. The presence of slag oxide phases Al2O3 and MoO2 was detected.


2005 ◽  
Vol 475-479 ◽  
pp. 1627-1630 ◽  
Author(s):  
Rui Zhu Zhang ◽  
Zhi Meng Guo ◽  
Cheng Chang Jia ◽  
Guangfeng Lu

This paper researched the fabrication of perovskite synrock by self-propagating high temperature synthesis (SHS) and the characterization of the products. This synthesis process is simpler, the fabricated synrock can immobilize waste loading up to 35wt% SrO with satisfied physical properties (density>4.2g•cm-3, open porosity<0.2%, Leach rate<1.0 g•m-2•d-1). The structure analyses by XRD and SEM/EDS show that the major phase is perovskite which well agrees with the design. It proves that SHS offer a suitable Sr-waste synroc which is favorable for geological disposal.


2016 ◽  
Vol 675-676 ◽  
pp. 623-626 ◽  
Author(s):  
Tawat Chanadee ◽  
Sutham Niyomwas

Silicon-silicon carbide (Si-SiC) composite powders were synthesized by in-situ self- propagating high-temperature synthesis using rice husk ash (RHA)/carbon/Mg as precursors in argon atmosphere. The as-SHS powders were leached by two leaching steps. The microstructure and chemical composition of the obtained Si-SiC composite powders were examined using scanning electron microscope (SEM) and x-ray diffractometer (XRD), respectively.


Sign in / Sign up

Export Citation Format

Share Document