Study on Lubricating and Cooling Effects of Several Cooling Systems Used in Face Grinding

2005 ◽  
Vol 291-292 ◽  
pp. 221-226
Author(s):  
Takeshi Tanaka ◽  
T. Kobayashi

We observed that the lubrication effect is greater than the cooling effect for decreasing the friction heat in face grinding. It was clarified that cool-air grinding is difficult to apply to face grinding under the present grinding conditions. We could obtain the minimum ground surface roughness (hereafter noted as surface roughness) at a mist supply volume of 15 to 30ml/h in mist grinding. The largest stock removal rate (hereafter noted as grinding efficiency) is obtained in mist grinding. However, grinding efficient was small in cool-air mist grinding, by which a large cooling effect of cool air was expected. Though mist and cool-air mist grinding perform similar to wet grinding in few grinding passes, wet grinding is properly applied by large chip removal action in many grinding passes.

2007 ◽  
Vol 24-25 ◽  
pp. 261-264 ◽  
Author(s):  
Y. Hasuda ◽  
Y. Suzuki ◽  
Y. Tadokoro ◽  
S. Kinebuchi ◽  
T. Ohashi ◽  
...  

The fundamental experiment of the grinding of the stainless steel using the metal bonded CBN wheel which was excellent in wear resistance was conducted. The most appropriate grinding conditions were obtained by clarifying wear process of grinding wheel and finished ground surface quality. When grinding was carried out up to stock removal 7000mm3/mm, radial wear of grinding wheel %R is 3μm and surface roughness Rz was 0.5μm or less. The grinding ratio Gr becomes about 3000, and long life grinding with little change of surface roughness was possible.


2012 ◽  
Vol 565 ◽  
pp. 28-33
Author(s):  
Nobuhito Yoshihara ◽  
Hiroaki Murakami ◽  
Naohiro Nishikawa ◽  
Masahiro Mizuno ◽  
Toshirou Iyama

Roughness is important criterion of ground surface. When the surface roughness is demanded to be smooth, it is required to make the grinding conditions optimum. To optimize the grinding conditions, relationship between grinding conditions and ground surface roughness must be known. Therefore, it has been attempted to reveal the effect of grinding conditions on the roughness of ground surface over the years. From previous researches, it becomes possible to estimate the ground surface roughness with statistical grinding theory. However, there are some parameters, such as wheel depth of cut and distribution of abrasive grain, are not factored in the theory. In this paper, fundamental research on cross sectional profile is carried out to consider the relationship between the wheel depth of cut and ground surface roughness.


2010 ◽  
Vol 126-128 ◽  
pp. 995-1000 ◽  
Author(s):  
Hong Hua Su ◽  
Yu Can Fu ◽  
Jiu Hua Xu ◽  
Wen Feng Ding ◽  
Hong Jun Xu

The monolayer brazed diamond tools have recently been used increasingly in hard-brittle materials grinding because of their excellent grinding performances as long tool life, high material removal rate and large inter-grit chip space, etc. However, they possess an inherent shortcoming of the high roughness of the grinding surface. This work is an attempt to reduce the over-protruded grits of the monolayer brazed diamond wheel so that precision grinding operations can be executed effectively. In this investigation, the monolayer brazed diamond wheels with regular distribution pattern of grit have been dressed by a special conditioning process and used in precision grinding experiments on Li-Ti ferrite. The outcome of this attempt appeared highly encouraging. A substantial improvement of the ground surface roughness could be achieved with the dressed monolayer brazed diamond wheels.


2022 ◽  
Vol 16 (1) ◽  
pp. 38-42
Author(s):  
Nobuhito Yoshihara ◽  
◽  
Haruki Takahashi ◽  
Masahiro Mizuno

In order to reduce the grinding surface roughness, it is necessary to optimize the grinding conditions; this requires clear understanding of the relationship between the grinding conditions and ground surface roughness. Therefore, various studies have been carried out over the decades on the ground surface roughness and have proposed statistical grinding theory to define the relationship between the grinding conditions and ground surface roughness. However, the statistical grinding theory does not consider a few grinding conditions such as abrasive grain shape and distribution of abrasive grain, which affect the ground surface roughness. In this study, we construct a statistical grinding theory that considers the effect of abrasive grain distribution and improves the accuracy of the theoretical analysis of the ground surface roughness.


2006 ◽  
Vol 304-305 ◽  
pp. 340-344 ◽  
Author(s):  
G.F. Gao ◽  
Bo Zhao ◽  
C.S. Liu ◽  
Qing Hua Kong

Experimental researches on material removal rate and surface roughness of Al2O3 engineering ceramic guide-pulley lapping were carried out using W20 and W5 fixed oilstones by self-developed ultrasonic lapping tool both with and without ultrasonic assistance. Experimental results show that lapping speed, lapping pressure and grain size produce different effects on the lapped surface roughness and material removal rate. The material removal rate in ultrasonic lapping process is two times as large as that in traditional lapping, and the ground surface roughness is superior to that in common machining method. The material removal rate increases along with the average diameter of grains and the lapping speed both in ultrasonic lapping and traditional lapping. In traditional lapping process the material removal rate becomes bigger along with the lapping force, while in ultrasonic lapping it gets the optimal value with the lapping force 450N. The value of lapped surface roughness increases along with the lapping speed in traditional lapping, on the contrary it decreases contrast to the lapping speed until 250rpm in the ultrasonic lapping. The value of traditionally lapped surface roughness decreases contrast to the lapping force, whereas it achieves the minimum with the lapping force 450N with ultrasonic assistance.


2013 ◽  
Vol 797 ◽  
pp. 522-527
Author(s):  
Taisei Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In the grinding operation, grinding wheels are deformed by grinding forces, so that residual stock removal of the workpiece takes place. Since this residual stock removal of the workpiece causes low machining efficiency and deterioration of machining accuracy, high hardness grinding wheels may be selected in order to obtain high machining efficiency and/or high quality machining accuracy. On the other hand, when grinding operations used by low hardness grinding wheels are carried out, it is well known that ground surface roughness is smaller than in case of higher hardness grinding wheels. From such a viewpoint, this study aims to investigate experimentally the effect of the contact stiffness of grinding wheel on the ground surface roughness and the residual stock removal of the workpiece. Grinding operations were carried out using three grinding wheels which are different hardness type, and ground surface roughness and residual stock removal of the workpiece were measured. The contact stiffness of grinding wheel was calculated by a support stiffness of single abrasive grain and a contact area between grinding wheel and workpiece. Comparing the contact stiffness of grinding wheel with the ground surface roughness and the residual stock removal of the workpiece, it was known that ground surface roughness increases and residual stock removal of workpiece decreases with increaseing the contact stiffness of grinding wheel. From these results, since elastic deformation of the grinding wheel changed depending on the suppot stiffness of single abrasive grain, it was clarified that the ground surface roughness and the residual stock removal of the workpiece were changed by the contact stiffness of grinding wheel.


2007 ◽  
Vol 329 ◽  
pp. 495-500
Author(s):  
Hang Gao ◽  
W.G. Liu ◽  
Y.G. Zheng

It is experimentally found that existing micro-holes or micro-concaves on the cemented carbide base surface of electroplated CBN wheel is one of important reasons to worsen the combining intensity of the electroplated abrasives layer with the grinding wheel base. It is well solved by sealing the holes or concaves with steam sealing method. Further more the electroplated CBN wheel with cemented carbide base for precision grinding of compressor cylinder vane slot is developed by optimizing the electroplating prescription and process. Productive grinding results show that the ground surface roughness, size precision and the wheel life have reached the advanced index of the same type of wheel imported.


2020 ◽  
Vol 4 (4) ◽  
pp. 114
Author(s):  
Akira Mizobuchi ◽  
Atsuyoshi Tashima

This study addresses the wet grinding of large stainless steel sheets, because it is difficult to subject them to dry grinding. Because stainless steel has a low thermal conductivity and a high coefficient of thermal expansion, it easily causes grinding burn and thermal deformation while dry grinding on the wheel without applying a cooling effect. Therefore, wet grinding is a better alternative. In this study, we made several types of grinding wheels, performed the wet grinding of stainless steel sheets, and identified the wheels most suitable for the process. As such, this study developed a special accessory that could be attached to a wet grinding workpiece. The attachment can maintain constant pressure, rotational speed, and supply grinding fluid during work. A set of experiments was conducted to see how some grinding wheels subjected to some grinding conditions affected the surface roughness of a workpiece made of a stainless steel sheet (SUS 304, according to Japanese Industrial Standards: JIS). It was found that the roughness of the sheet could be minimized when a polyvinyl alcohol (PVA) grinding wheel was used as the grinding wheel and tap water was used as the grinding fluid at an attachment pressure of 0.2 MPa and a rotational speed of 150 rpm. It was shown that a surface roughness of up to 0.3 μm in terms of the arithmetic average height could be achieved if the above conditions were satisfied during wet grinding. The final surface roughness was 0.03 μm after finish polishing by buffing. Since the wet grinding of steel has yet to be studied in detail, this article will serve as a valuable reference.


2009 ◽  
Vol 76-78 ◽  
pp. 88-93 ◽  
Author(s):  
Keisuke Hara ◽  
Hiromi Isobe ◽  
Akira Kyusojin

High precision mold grinding technique to obtain mirror surface is required which realizes minimization or omission of final polishing by skilled workers. In the previous reports, ultrasonic diamond grinding experiments were carried out to confirm ultrasonic oscillation effect for die steel face grinding. Smooth and glossy surfaces were obtained successfully and little abrasive worn out was found. In the above techniques require cutting edge truncation because the cutting edge shape of a tool affects the ground surface resulting from transcription of cutting edge. This paper describes optimization techniques for the cutting edge truncation of diamond electroplated tools which are used in ultrasonically assisted grinding. Experiments were carried out to confirm truncation effects on the ground surface and grinding force. It was confirmed that roughness was proportional to inverse of thrust force. Minimum roughness in grinding conditions were estimated from the proportional diagrams. The minimum roughness shows limit of roughness on an each grinding condition.


Sign in / Sign up

Export Citation Format

Share Document