Electromagnetic Field Analysis and Measurement for High Speed Attraction Type Magnetic Levitation Vehicle Systems

2005 ◽  
Vol 295-296 ◽  
pp. 655-660
Author(s):  
D.X. Chen ◽  
M.C. Pan ◽  
F.L. Luo ◽  
Z.W. Kang ◽  
W.G. Tian ◽  
...  

Research achievements in a high speed attraction type magnetic levitation vehicle experimental system are reported. The high speed attraction type magnetic levitation vehicle constitutes a typical long stator linear synchronous motor. The study on levitation and propulsive electromagnetic fields is of great importance and is studied. Owing to the influence of the stator grooves and the material discontinuousness, the magnetic field distribution is very complex to be analyzed in analytical forms. The magnetic fields in the air gap are determined using the finite element method. The levitation force and thrust produced by the levitation magnetic field and the propulsive magnetic field are calculated. They are found to vary following the change of the air gap and exciting current. A magnetic field strength measurement system based on a hall sensor is designed. Experimental results are compared with the results from the magnetic field analysis.

2009 ◽  
Vol 154 ◽  
pp. 175-179 ◽  
Author(s):  
Yutaka Sakurai ◽  
Ryo Nakajima ◽  
Hiroko Nakamura

Authors use magnetron sputtering technique for controlling the film composition by modifying the magnetic field with an external solenoid in addition to the magnetic field with a permanent magnet on back of composite target. It is necessary to understand the contribution of the solenoid quantitatively for the effective application of this technique. The magnetic field changes by the solenoid current on the target were calculated by the finite element method (FEM), and compared with the film composition. As the solenoid current increases, magnetic tunnel region on the target (correspond with the well sputtered region by the confined plasma) moves to the centre of the target. The behaviour corresponds with the actually formed film composition. The calculated results also give an information to design the composite target and the correction value for using the already eroded target.


2013 ◽  
Vol 668 ◽  
pp. 510-513
Author(s):  
Xiao Hua Bao ◽  
Mou Zhi Liu

A changing air gap permeance model of the alternator and its influence were discussed in this paper. When the alternator was under high-speed operation, taking it into consideration that the claws getting deformation for rotating centrifugal force and electromagnetic exciting force, the alternator’s changing air gap permeance model was established. And the alternator’s Maxwell3D calculation model was built. The field magnetic distribution under the rated speed was obtained as well, also before the claws’ deformation was obtained. The harmonics of the air-gap flux were analyzed and compared. The changing air gap permeance model was proved to be reasonable. It would lead to air-gap magnetic field distortion of the generator, which affected the generator’s electromagnetic properties. Instruction was provided for more precise of air gap magnetic field analysis or vibration noise analysis of alternator.


2012 ◽  
Vol 466-467 ◽  
pp. 940-945
Author(s):  
Xiao Hui Lu ◽  
Jian Hong Liang

The paper presents the magnetic field distribution from the armature winding currents in the slotted air gap of surface-mounted permanent magnet (SMPM) motors using the Schwarz- Christoffel(SC) mapping. With the method, a slotted structure of SMPM motors is transformed into a geometrically simpler domain. Compared with the result from the finite element method, the accuracy of the method is verified. The presented work can be a basic tool for optimizing design and performance analysis of permanent magnet motors.


2011 ◽  
Vol 121-126 ◽  
pp. 2706-2709
Author(s):  
Dan Jiang ◽  
Ping Yang ◽  
Kun Jiang

As a type of solid state switch, MR (magnetoresistive) sensor detects the air cylinder piston’s position in pneumatic control system. The construction and working principle of the air cylinder with MR sensor are introduced. Using 2-D magnetic field finite element analysis (FEA) method, the magnetic field distribution of air cylinder with piston motion is analyzed. Simulation results are given. The magnetic flux density characteristics are compared between piston wear or not.


2013 ◽  
Vol 694-697 ◽  
pp. 1179-1182
Author(s):  
Yi Lai Ma ◽  
Li Lin ◽  
Kai Wen Jiang ◽  
Xu Lin Zhao

Magnetic flux leakage is one type of electromagnetic nondestructive testing (NDT) which is widely utilized in the testing the integrity of drill pipe in the field. In this paper, the 3D model of excitation unit is completely built and analyzed by ANSYS software. The magnetic field of drill pipe in the combination of full excitation device is showed by ANSYS software instead of the physic experiments which increases the efficiency tremendously and decreases the cost and achieves the anticipated desire. It is considered that this technique can provide the theoretical basis of drill pipe excitation device and the magnetic flux leakage testing of drill pipe.


2011 ◽  
Vol 52-54 ◽  
pp. 285-290
Author(s):  
Yi Chang Wu ◽  
Feng Ming Ou ◽  
Bo Wei Lin

The prediction of the magnetic field is a prerequisite to investigate the motor performance. This paper focuses on the magnetic field estimation of surface-mounted permanent-magnet (SMPM) motors based on two approximations, i.e., the magnetic circuit analysis and the finite-element analysis (FEA). An equivalent magnetic circuit model is applied to analytically evaluate the magnetic field of a SMPM motor with exterior-rotor configuration. The two-dimensional FEA is then applied to numerically calculate the magnetic field and to verify the validity of the magnetic circuit model. The results show that the errors between the analytical predictions and FEA results are less than 6%. It is of benefit to further design purposes and optimization of SMPM motors.


Author(s):  
Behrooz Rezaeealam ◽  
Farhad Rezaee-Alam

Purpose The purpose of this paper is to present an improved conformal mapping (ICM) method that simultaneously considers the influence of relative recoil permeability of PMs, the armature reaction, the stator slotting, and the magnetic saturation on determination of the PM operating point in its different parts. Design/methodology/approach The ICM method is a time-effective method that considers the magnetic saturation by suitable increments in air-gap length under each tooth and also the width of slot openings. In this paper, the analytical and numerical conformal mappings such as the Schwarz-Christoffel (SC) mapping are used for magnetic field analysis due to the permanent magnets and the armature reaction in one slotted air gap. The field solution in the slotted air gap is obtained through the modulation of field solution in one slotless air-gap using the complex air-gap permeance. Findings The ICM method can consider the magnetic saturation in different electric loadings, and also the variation of PM operating points in its different parts. Practical implications The ICM method is applied to one surface mounted permanent magnet (SMPM) motor and is verified by comparing with the corresponding results obtained through finite element method (FEM), and frozen permeability finite element method (FP-FEM). Originality/value This paper presents an ICM method with a new technique for saturation effect modeling, which can be used to separate and calculate the on-load components of air-gap field and torque.


Sign in / Sign up

Export Citation Format

Share Document