Assessment of Indentation Fracture Toughness Based on a Direct Measurement of Crack-Driving Residual Stress

2005 ◽  
Vol 297-300 ◽  
pp. 286-291
Author(s):  
Yun Hee Lee ◽  
Kazuki Takashima ◽  
Yakichi Higo ◽  
Dong Il Kwon

A direct measurement of the crack-driving stress has been attempted by applying a nanoindentation-combined, stress-probing technique to the expected crack routes ahead of a Vickers impression. The nanoindentation curves close to the remnant indent were compared to those of an unstressed bare sample and were interpreted into quantitative stress values. In detail, from the difference of two stress distributions measured from uncracked and cracked indentation corners, the driving stress for the radial cracking was estimated; a rapid decaying response with a distance to the Vickers indent center with the peak value 406.7MPa. The fracture toughness of soda-lime glass, estimated by taking into account the results measured in this study was 0.74 ± 0.15 2 / 1 m MPa × and was comparable with that of the literature.

Author(s):  
Mohammad Shah Jamal ◽  
M.S. chowdhury ◽  
Saraswati Bajgai ◽  
M Hossain ◽  
A. Laref ◽  
...  

Abstract The structural and optical characteristics of Nickel oxide thin films (NiOTF) formed on the soda-lime glass substrate (SLG) under vacuum and non-vacuum conditions are investigated in this work. The difference between RFMS (Radio Frequency Magnetron Sputtering; vacuum) and SP (spray pyrolysis; non-vacuum) was helpful in the development of NiOTF. Deposited films data for this study were characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), scanning probe microscopy (SPM), and optical spectrophotometer. Structural studies disclosed that NiOTF developed via RFMS technique was more uniform with large crystals and lower surface roughness in contrast to that of developed via SP technique. Transmittance spectrum divulged that the transmittance of spray pyrolyzed NiO films are ~10% less than that of ones produced by RFMS. Urbach energy analysis of NiOTF developed by RFMS and SP affirmed the findings of structural studies.


2005 ◽  
Vol 88 (10) ◽  
pp. 2868-2873 ◽  
Author(s):  
Hang Wang ◽  
Giuseppe Isgro ◽  
Prem Pallav ◽  
Albert J. Feilzer ◽  
Yonglie Chao

2007 ◽  
Vol 124-126 ◽  
pp. 695-698 ◽  
Author(s):  
A. Balakrishnan ◽  
Min Cheol Chu ◽  
B.B. Panigrahi ◽  
K.J. Yoon ◽  
J.C. Kim ◽  
...  

Molten Soda lime glass (SLG) was penetrated into the surface of ZTA at 1500°C for the holding time of 1 to 10 h. The depth of the glass penetration increased with increasing holding time. The thermal expansion mismatch and elastic property mismatch between the penetrated glass and ZTA produced residual compression in the surface region during cooling. This residual compression enhanced the flexural strength and fracture toughness remarkably.


1990 ◽  
Vol 112 (2) ◽  
pp. 151-156 ◽  
Author(s):  
J. T. Gillanders ◽  
R. A. Riddle ◽  
R. D. Streit ◽  
I. Finnie

The fracture toughness of soda-lime glass was measured by applying thermal stresses to center-cracked plates. Mode I cracking was achieved by chilling the crack faces. The stress intensity factor was obtained by combining temperature measurements with a finite element solution. The average value of KIC = 0.77 MN/m3/2 based on three tests agrees well with values in the literature for a water-free environment. Mode II cracking was achieved by applying a temperature gradient normal to the crack. A value KIIC = 1.6 MN/m3/2 was obtained in two tests using a finite element computation based on the temperature distribution computed from the specimen’s thermal boundary conditions.


2017 ◽  
Vol 128 ◽  
pp. 30-36 ◽  
Author(s):  
C. Garay C. ◽  
A.M. Guzmán ◽  
A. Torres-Castro ◽  
H. Alejo G. ◽  
A. Moreno J. ◽  
...  

Volume 4 ◽  
2004 ◽  
Author(s):  
Abdullatif M. Alteraifi ◽  
Abdelsamie Moet

The kinetics and mechanisms of complete spreading of polydimethylsiloxane (PDMS) droplets on a solid substrate were examined to discern the limits of the hydrodynamic regime and to identify the nature of the subsequent transport processes. Experiments were conducted on PDMS-1000 in comparison with glycerin on soda-lime glass. The kinetic data were analyzed within the context of a thermodynamic framework which accounts for the driving force of droplet spreading as the difference between Laplace pressure and the solid/liquid interfacial energy. As Laplace pressure within the droplet was depleted to a minimum the glycerin droplet ceased to spread and the PDMS droplet was caused to transform into a 100 micrometer thin film spreading in a Fickian-type behavior. Contrary to the monolayer notion, the diffusive transport of the liquid film ended up with fragmented island domains hopping over the solid substrate, probably driven by short range forces. Based on the evidence gathered in this study what is generally accepted as “complete” spreading falls into three distinct regimes: Hydrodynamic regime, diffusive regime and fragmented islands regime; each is driven by a different mechanism. In analogy with other liquids, PDMS is suggested to exhibit partial wetting with small, but finite, equilibrial contact angle of about 8 degrees. Diffusive and fragmented island regimes are likely a manifestation of the unusual molecular mobility of the PDMS molecules.


Author(s):  
Branimir Bajac ◽  
Jovana Stanojev ◽  
Slobodan Birgermajer ◽  
Milena Radojevic ◽  
Jovan Matovic

Sign in / Sign up

Export Citation Format

Share Document