Experimental Study on the Mechanical Properties of Satin Carbon Fabric/Epoxy Composites

2005 ◽  
Vol 297-300 ◽  
pp. 2909-2914
Author(s):  
J.C. Liu ◽  
Tie Jun Wang ◽  
W. Zhang

Effect of resin content on the mechanical properties of satin carbon fabric/epoxy composites is studied in this paper. Mechanical properties of the satin carbon fabric/epoxy composites are experimentally measured. The compressive strength and conversion ratio of strength of carbon fiber in the fabric composites are measured and compared with the experimental data of composite laminates reinforced by unidirectional fiber tape.

2013 ◽  
Vol 671-674 ◽  
pp. 1761-1765
Author(s):  
Yong Liu ◽  
Chun Ming Song ◽  
Song Lin Yue

In order to get mechanical properties ,some RPC samples with 5% steel fiber are tested, many groups data were obtained such as compressive strength, shear strength and fracture toughness. And a group of tests on RPC with 5% steel-fiber under penetration were also conducted to validate the performance to impact. The penetration tests are carried out by the semi-AP projectiles with the diameter of 57 mm and earth penetrators with the diameter of 80 mm, and velocities of the two kinds of projectiles are 300~600 m/s and 800~900 m/s, respectively. By contrast between the experimental data and the calculation results of C30 reinforced concrete by using experiential formula under penetration, it shows that the resistance of steel-fiber RPC to penetration is 3 times as that of general C30 reinforced concrete.


2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2019 ◽  
Vol 279 ◽  
pp. 02009
Author(s):  
Antonio Shopov ◽  
Borislav Bonev

Zone of yield strength is a part of stress-strain diagram on steel. In this zone is located an upper and lower yield strength points. These points are important for calculation and design of steel structures elements. When a structural element is corroded, its mechanical properties are changed i.e. changes the geometric characteristics, superficial defects appear and leads to structural changes of material. The facts unambiguously determine that in order to decide whether or not the corrosion element can be reuse, it is necessary to study the material and to determine the new values at the yield strength points. In order to legally make the necessary calculation in sizing and to judge for its reuse. The report studies a zone of yield strength on steel elements with corrosion. Experimental data was obtained, then processed using the stochastic method of processing empirically obtained data, and it was determined with sufficient probability the values to be used for calculation and design in practice.


2013 ◽  
Vol 438-439 ◽  
pp. 102-107 ◽  
Author(s):  
Wen Kang Guo ◽  
Li Wang ◽  
Shu Yin Wang ◽  
Dao Yin Lan ◽  
Sheng Ping Li

This paper selected two kinds of alkali-free liquid concrete accelerators and tested their compatibility with ordinary Portland cement, Portland cement and moderate heat Portland cement by measuring the setting times, compressive strength and compressive strength ratio of samples. The results showed that the compatibility is good between alkali-free accelerators and two types of cement: ordinary Portland cement and moderate heat Portland cement. However, the compatibility of two accelerators and Portland cement are quite different, the compatibility of AFA-2 accelerator is excellent, but AFA-1 accelerator is very poor. The setting times of alkali-free accelerators is mainly influenced by the mixing materials content, gypsum content, C3A and C3S content. In order to ensure the mechanical properties and durability of concrete, the setting times of new concrete accelerator is not the shorter the better, the appropriate initial and final setting times are 1min30s~5min and 4min~ 12min respectively.


2013 ◽  
Vol 594-595 ◽  
pp. 401-405
Author(s):  
S.M. Tamizi ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hussin Kamarudin ◽  
C.M. Ruzaidi ◽  
J. Liyana ◽  
...  

Geopolymer is an inorganic polymer performed in synthesis process of an aluminosilicate material which activated by alkaline activator solution. Marine clay, considered to be a waste substance which have an important aluminosilicate sources in developing geopolymer synthesis since it contains sufficient amounts of alumina and silica. In this experimental study, local marine clay composition was been identified to determine the amount of alumina and silica. The raw sample compositions were identified by using X-ray fluorescence (XRF). Incorporated with it composition, compressive strength of brick were been tested in aged of 1, 2 and 3 day and compared with local production of cement brick (CB). This research is aimed at determining the properties of Kuala Perlis marine clay in order to verify its suitability as a pozzolana materials as well as the sufficient amount of Al and Si to enhance the properties of geopolymer brick.


2014 ◽  
Vol 496-500 ◽  
pp. 2402-2406
Author(s):  
Kui He ◽  
Hui Yang ◽  
Fang Fang Jia ◽  
Er Po Wang ◽  
Zhen Bao Lu ◽  
...  

Workability, strength and fracture mechanics of polypropylene macro-fiber reinforced Reactive powder concrete (RPC) were studied in this work. The results showed that the incorporation of macro-fiber could influence the workability of RPC, the slump of RPC decreased with the increasing of macro-fiber content; compressive strength decreased while splitting strength increased with the increasing of macro-fiber, meanwhile the flexural strength invariant. Macro-fiber could strongly enhance the flexural toughness of RPC and changed the failure mode from brittle to ductile; fracture energy tends to increase linearly with the increasing of macro-fiber.


2014 ◽  
Vol 912-914 ◽  
pp. 131-135
Author(s):  
Xiang Ping Fu ◽  
Xiao Xue Liu ◽  
Yi Ze Sun ◽  
Pei Huang ◽  
Yu Chen Li ◽  
...  

The experiment studies how the freeze-thaw cycles influence concrete compressive strength and elasticity modulus with different water-cement ratio under the air-entraining agent and zero of that value respectively. It can be found that modulus of elasticity and compressive strength of the concrete specimen reduced significantly when there is air-entraining agent; the durability of freeze-thaw resistance, however, makes great improvement; as the cement increases, both of them improves effectively. Through the comparison of concrete compressive strength and elastic modulus with different water-cement ratio and air-entraining agent, the optimal water-cement ratio and air-entraining agent were determined. The results of experiment can be used in concrete engineering design in severe cold area.


Sign in / Sign up

Export Citation Format

Share Document