Feasibility Study on Composition and Mechanical Properties of Marine Clay Based Geopolymer Brick

2013 ◽  
Vol 594-595 ◽  
pp. 401-405
Author(s):  
S.M. Tamizi ◽  
Abdullah Mohd Mustafa Al Bakri ◽  
Hussin Kamarudin ◽  
C.M. Ruzaidi ◽  
J. Liyana ◽  
...  

Geopolymer is an inorganic polymer performed in synthesis process of an aluminosilicate material which activated by alkaline activator solution. Marine clay, considered to be a waste substance which have an important aluminosilicate sources in developing geopolymer synthesis since it contains sufficient amounts of alumina and silica. In this experimental study, local marine clay composition was been identified to determine the amount of alumina and silica. The raw sample compositions were identified by using X-ray fluorescence (XRF). Incorporated with it composition, compressive strength of brick were been tested in aged of 1, 2 and 3 day and compared with local production of cement brick (CB). This research is aimed at determining the properties of Kuala Perlis marine clay in order to verify its suitability as a pozzolana materials as well as the sufficient amount of Al and Si to enhance the properties of geopolymer brick.

2016 ◽  
Vol 857 ◽  
pp. 400-404
Author(s):  
Tian Yu Xie ◽  
Togay Ozbakkaloglu

This paper presents the results of an experimental study on the behavior of fly ash-, bottom ash-, and blended fly and bottom ash-based geopolymer concrete (GPC) cured at ambient temperature. Four bathes of GPC were manufactured to investigate the influence of the fly ash-to-bottom ash mass ratio on the microstructure, compressive strength and elastic modulus of GPC. All the results indicate that the mass ratio of fly ash-to-bottom ash significantly affects the microstructure and mechanical properties of GPCs


Author(s):  
Muhammad Armaghan Siffat ◽  
Muhammad Ishfaq ◽  
Afaq Ahmad ◽  
Khalil Ur Rehman ◽  
Fawad Ahmad

This study is supervised to assess the characteristics of the locally available wheat straw ash (WSA) to consume as a substitute to the cement and support in enhancing the mechanical properties of concrete. Initially, after incineration at optimum temperature of 800°C for 0.5, the ash of wheat straw was made up to the desirable level of fineness by passing through it to the several grinding cycles. Subsequently, the X-ray fluorescence (XRF) along with X-ray diffraction (XRD) testing conducted on ash of wheat straw for the evaluation its pozzolanic potential. Finally, the specimens of concrete were made by consuming 10% and 20% percentages of wheat straw ash as a replacement in concrete to conclude its impact on the compressive strength of high strength concrete. The cylinders of steel of dimensions 10cm diameter x 20cm depth were acquired to evaluate the compressive strength of high strength concrete. The relative outcomes of cylinders made of wheat straw ash substitution presented the slight increase in strength values of the concrete. Ultimately, the C-100 blends and WSA aided cement blends were inspected for the rheology of WSA through FTIR spectroscopy along with Thermogravimetric technique. The conclusions authenticate the WSA potential to replace cement in the manufacturing of the high strength concrete.


2017 ◽  
Vol 12 (1) ◽  
pp. 63-77 ◽  
Author(s):  
Siriporn Sirikingkaew ◽  
Nuta Supakata

This study presents the development of geopolymer bricks synthetized from industrial waste, including fly ash mixed with concrete residue containing aluminosilicate compound. The above two ingredients are mixed according to five ratios: 100:0, 95:5, 90:10, 85:15, and 80:20. The mixture's physico-mechanical properties, in terms of water absorption and the compressive strength of the geopolymer bricks, are investigated according to the TIS 168-2546 standard. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses are used to investigate the microstructure and the elemental and phase composition of the brick specimens. The results indicate that the combination of fly ash and concrete residue represents a suitable approach to brick production, as required by the TIS 168–2546 standard.


2015 ◽  
Vol 754-755 ◽  
pp. 348-353 ◽  
Author(s):  
Norlia Mohamad Ibrahim ◽  
Leong Qi Wen ◽  
Mustaqqim Abdul Rahim ◽  
Khairul Nizar Ismail ◽  
Roshazita Che Amat ◽  
...  

Compressive strength of concrete is the major mechanical properties of concrete that need to be focused on. Poor compressive strength will lead to low susceptibility of concrete structure towards designated actions. Many researches have been conducted to enhance the compressive strength of concrete by incorporating new materials in the concrete mixture. The dependencies towards natural resources can be reduced. Therefore, this paper presents the results of an experimental study concerning the incorporation of artificial lightweight bubbles aggregate (LBA) into cementations mixture in order to produce comparable compressive strength but at a lower densities. Three concrete mixtures containing various percentages of LBA, (10% - 50% of LBA) and one mixture used normal aggregate (NA) were prepared and characterized. The compressive strength of LBA in concrete was identified to be ranged between 39 MPa and 54 MPa. Meanwhile, the densities vary between 2000 kg/m3 to 2300 kg/m3.


2017 ◽  
Vol 888 ◽  
pp. 184-187
Author(s):  
Salwa Ismail ◽  
Mohammad Faizal Mohd Razali ◽  
Izwan Johari ◽  
Zainal Arifin Ahmad ◽  
Shah Rizal Kasim

In this study, the geopolymer mortars were synthesized with fly ash (FA) and silica powder as aluminosilicate sources and a combination of sodium hydroxide (NaOH) solution, sodium silicate (Na2SiO3) solution and distilled water as alkaline activator. Commercial sago was used as a pore former in the mortars. The percentage of sago used were 10, 20 and 30 wt% of FA. The amount of added water used in each mixture was 5% by weight of FA, NaOH solution and Na2SiO3 solution. The formed geopolymer mortars were cured for 1, 3 and 7 days and sintered at 1000 °C. X-ray fluoresence (XRF) shown that FA contains higher amount of silica (SiO2) and alumina (Al2O3) which is important as aluminosilicate sources. The properties of the geopolymer mortars before and after sintered at 1000 °C have been investigated. The results show that geopolymer mortars with 10% of sago content with curing time of 7 days and sintered at 1000 °C give the highest compressive strength of 13.5 MPa.


2013 ◽  
Vol 438-439 ◽  
pp. 102-107 ◽  
Author(s):  
Wen Kang Guo ◽  
Li Wang ◽  
Shu Yin Wang ◽  
Dao Yin Lan ◽  
Sheng Ping Li

This paper selected two kinds of alkali-free liquid concrete accelerators and tested their compatibility with ordinary Portland cement, Portland cement and moderate heat Portland cement by measuring the setting times, compressive strength and compressive strength ratio of samples. The results showed that the compatibility is good between alkali-free accelerators and two types of cement: ordinary Portland cement and moderate heat Portland cement. However, the compatibility of two accelerators and Portland cement are quite different, the compatibility of AFA-2 accelerator is excellent, but AFA-1 accelerator is very poor. The setting times of alkali-free accelerators is mainly influenced by the mixing materials content, gypsum content, C3A and C3S content. In order to ensure the mechanical properties and durability of concrete, the setting times of new concrete accelerator is not the shorter the better, the appropriate initial and final setting times are 1min30s~5min and 4min~ 12min respectively.


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2089 ◽  
Author(s):  
Jun Xing ◽  
Yingliang Zhao ◽  
Jingping Qiu ◽  
Xiaogang Sun

This paper investigated the effect of blast furnace slags (BFS) characteristics on the properties achievement after being alkali activated. The physical and chemical characteristics of BFS were determined by X-ray fluorescence (XRF), X-ray Diffraction (XRD) and laser granulometry. Multi-technical characterizations using calorimetry, XRD, Fourier Transform Infrared Spectroscopy (FTIR), Thermogravimetry (TG-DTG), scanning electron microscope (SEM), nitrogen sorption and uniaxial compressive strength (UCS) were applied to give an in-depth understanding of the relationship between the reaction products, microstructure and BFS characteristics. The test results show that the microstructure and mechanical properties of alkali activated blast furnace slags (BFS) highly depend on the characteristics of BFS. Although the higher content of basic oxide could accelerate the hydration process and result in higher mechanical properties, a poor thermal stabilization was observed. On the other hand, with a higher content of Fe, the hydration process in alkali activated BFS2 lasts for a longer time, contributing to a delayed compressive strength achievement.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Sembian Manoharan ◽  
Bhimappa Suresha ◽  
Govindarajulu Ramadoss ◽  
Basavaraj Bharath

Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4) to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber) is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA) was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′), loss modulus (E′′), and damping factor (tan δ). The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD) and energy-dispersive X-ray (EDX) analysis were employed to characterize the friction composites.


2014 ◽  
Vol 496-500 ◽  
pp. 2402-2406
Author(s):  
Kui He ◽  
Hui Yang ◽  
Fang Fang Jia ◽  
Er Po Wang ◽  
Zhen Bao Lu ◽  
...  

Workability, strength and fracture mechanics of polypropylene macro-fiber reinforced Reactive powder concrete (RPC) were studied in this work. The results showed that the incorporation of macro-fiber could influence the workability of RPC, the slump of RPC decreased with the increasing of macro-fiber content; compressive strength decreased while splitting strength increased with the increasing of macro-fiber, meanwhile the flexural strength invariant. Macro-fiber could strongly enhance the flexural toughness of RPC and changed the failure mode from brittle to ductile; fracture energy tends to increase linearly with the increasing of macro-fiber.


2021 ◽  
Vol 10 (2) ◽  
pp. 129-138
Author(s):  
. Fatma ◽  
. Desnelli ◽  
Fahma Riyanti ◽  
Mustafa Kamal ◽  
Muhammad Ramdan Abdul Mannan ◽  
...  

Eggshell is a solid waste that is available in abundance but is being left unused. Eggshell containing calcium in a high amount. Calcium can be used as a precursor for hydroxyapatite (HAp). Modification of HAp with SiO2 is expected to improve its low mechanical properties for biomedical applications. In this study, HAp is synthesized from the eggshell. Then, it was modified by adding SiO2 utilizing the coprecipitation method with concentrations of 10%, 20%, 30%, and 40%, respectively. The HAp and HAp/SiO2 were characterized using; X-ray diffraction and Fourier transform infrared spectroscopy. The analysis HAp and HAp/SiO2 were density, compressive strength, and hardness. The best mechanical properties of HAp/SiO2 were characterized using SEM-EDS. The HAp were prepared successfully with a ratio of Ca/P was 1.673, close to the theoretical 1.67. The addition of SiO2 caused a decrease in crystallite size and density but increased compressive strength and hardness. The best mechanical properties of HAp/SiO2 were obtained with SiO2 of 30% and 40% with similar values.


Sign in / Sign up

Export Citation Format

Share Document