Estimation of the Crack Propagation Direction of a Crack Touching the Interface between Two Elastic Materials

2007 ◽  
Vol 567-568 ◽  
pp. 225-228 ◽  
Author(s):  
Luboš Náhlík ◽  
Lucie Šestáková ◽  
Pavel Hutař

The objective of the paper is to investigate the direction of a further crack propagation from the interface between two elastic materials. The angle of crack propagation changes when the crack passes the interface. The suggested procedure makes it possible to estimate an angle of propagation under which the crack will propagate into the second material. The assumptions of linear elastic fracture mechanics and elastic behavior of the body with interfaces are considered. The finite element method was used for numerical calculations. The results obtained might contribute to a better understanding of the failure of materials with interfaces (e.g. layered composites, materials with protective coatings) and to a more reliable estimation of the service life of such structures.

2014 ◽  
Vol 606 ◽  
pp. 209-212
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

This paper deals with the fracture behaviour of layered ceramic composite with residual stresses. The main goal is to investigate the effect of residual stresses and material interfaces on crack propagation by more complex 3D finite element models. The crack behaviour was described by analytical procedures based on linear elastic fracture mechanics (LEFM) and generalized LEFM. The influence of laminate composition with residual stresses on critical values for crack propagation through the laminate interfaces was also determined. Good agreement has been found to exist between numerical results and experimental data. The results obtained can be used for a design of new layered composites with improved resistance against crack propagation.


2005 ◽  
Vol 297-300 ◽  
pp. 521-526
Author(s):  
Insu Jeon ◽  
Masaki Omiya ◽  
Hirotsugu Inoue ◽  
Kikuo Kishimoto ◽  
Tadashi Asahina

A new specimen is proposed to measure the interfacial toughness between the Al-0.5%Cu thin film and the Si substrate. The plain and general micro-fabrication processes are sufficient to fabricate the specimen. With the help of the finite element method and the concepts of the linear elastic fracture mechanics, the detailed structure for this specimen is modeled and evaluated. The results obtained from this research show that the proposed specimen provides efficient and convenient method to measure the interfacial toughness between the Al-Cu thin film and the Si substrate.


2013 ◽  
Vol 592-593 ◽  
pp. 209-212 ◽  
Author(s):  
Lucie Šestáková Malíková ◽  
Václav Veselý

The multi-parameter fracture mechanics becomes more and more significant, because it is shown that it can help to describe fracture processes occurring in cracked specimens more precisely than conventional linear elastic fracture mechanics. In this paper, the concept based on the Williams expansion derived for approximation of stress/displacement crack-tip fields is presented and applied on a mixed-mode configuration. Two fracture criteria for estimation of the initial crack propagation angle are introduced. A parametric study is performed in order to investigate the dependence of the crack propagation angle on the stress intensity factors ratio. Influence and importance of taking into account the so-called higher-order terms of the Williams expansion are discussed and some recommendations are stated.


Author(s):  
Harcharan Singh Ranu

Design of an artificial knee was developed using computer 3-D modeling, the high flexion knee was obtained by using a multi-radii design pattern, The increase of final 20 degrees in flexion was obtained by increasing the condylar radii of curvature. The model of the high flexion knee was developed and one of the models was subjected to finite element modeling and analysis. The compositions of components in the artificial knee were, femoral component and the tibial component were metal, whereas the patellar component and the meniscal insert were made using polyethylene. The metal component used for the analysis in this study was Ti6Al4V and the polyethylene used was UHMWPE. Overall biomaterials chosen were: meniscus (UHMWPE, mass = 0.0183701 kg, volume = 1.97518e-005 m3), tibial component (Ti6Al4V, mass = 0.0584655 kg, volume = 1.32013e-005 m3), femoral component (Ti6Al4V, mass = 0.153122 kg, volume = 3.45742e-005 m3), total artificial assembly (mass = 0.229958 kg, volume = 6.75e-005m3). However, in this design the load had been taken to 10 times the body weight. The weight over single knee is only half the maximum load as the load is shared between the two knee joints. Following were the loading conditions, taking average body weight to be 70Kgs and taking extreme loading conditions of up to 10 times the body weight, i.e. 700Kgs on each of the leg performed the Finite Element Analysis (FEA) over the newly designed knee. The loading was done at an increment of 100 Kgs. The loading conditions and the meshing details for the analysis of the assembly were Jacobian check: 4 points, element size: 0.40735 cm, tolerance: 0.20367 cm, quality: high, number of elements: 80909, number of nodes: 126898. A maximum load of 600 Kgs is optimum for this model. The other components observed linear elastic behavior for the applied loads. Based on these results it was determined that the load bearing capacity of the model were well within the failure levels of the materials used for the analysis. A maximum load of 600 Kgs is optimum for this model. The other components observed linear elastic behavior for the applied loads. Based on these results it was determined that the load bearing capacity of the model were well within the failure levels of the materials used for the analysis. Conclusion drawn from this is that for the first time an innovative new design of an artificial knee joint to suite a segment of some religious population has been developed. This allows them to pray, bend in different positions and squat without too much difficulty.


2004 ◽  
Vol 50 (168) ◽  
pp. 109-115 ◽  
Author(s):  
Jérôme Weiss

AbstractRecent investigations of crevassing on alpine glaciers and ice shelves have been based on linear elastic fracture mechanics (LEFM). However, LEFM is unable to explain some aspects of crevasse formation such as the initiation of crevasse propagation from crystal-scale (mm) microcracks, the slow propagation of large fractures in ice shelves, and the acceleration of crevasse opening before breaking of the ice terminus. Here another mechanism to account for these observations is proposed: subcritical crevassing. Subcritical crack growth, documented in many materials though not yet explored in ice, is characterized by a crack velocity that scales as a power of the tensile stress intensity factor, but is much less than that associated with critical crack propagation. This mechanism allows crevasse propagation from mm-scale microcracks at velocities much lower than body wave speeds, and explains crevasse-opening accelerations in a natural way. Subcritical crevassing is theoretically explored for several simplified situations but is limited by a lack of available data on crevasse evolution.


2012 ◽  
Vol 204-208 ◽  
pp. 3016-3021
Author(s):  
Zheng Wen Jiang ◽  
Shui Wan ◽  
Chen Cheng

Abstract. The fatigue crack propagation life-span of the engineering structure is studied. Linear elastic fracture mechanics is applied to analyze the life-span of fatigue crack growth of specimen, which is under constant amplitude load. The software of Fatigue is used to calculate the life-span of a center crack plate steel specimen. The result show that the calculated values of the life-span are basically well with the experimental data.


2014 ◽  
Vol 627 ◽  
pp. 41-44
Author(s):  
Luboš Náhlík ◽  
Bohuslav Máša ◽  
Pavel Hutař

This paper deals with a description of the crack behaviour in the layered alumina-zirconia ceramic laminate. The main aim is to investigate the crack behaviour in the compressive layer. The crack propagation was investigated on the basis of linear elastic fracture mechanics. Two dimensional finite element models were developed in order to obtain a stress distribution around the crack tip. The stress intensity factors were computed numerically employing the direct method. The change in the crack propagation direction was estimated using criterion based on the strain energy density factor. Sharp crack deflection in the compressive layer was predicted by mentioned approach. The determined crack behaviour is qualitatively in a good agreement with experimental observations.


Sign in / Sign up

Export Citation Format

Share Document