Structure Analyses and Electrical Properties of Er-Doped ZnO Thin Films

2006 ◽  
Vol 301 ◽  
pp. 71-74 ◽  
Author(s):  
Shigeru Tanaka ◽  
Yukari Ishikawa ◽  
Dai Nezaki ◽  
Mitsuhiro Okamoto ◽  
Noriyoshi Shibata

Er-doped ZnO thin films which emitted intense infrared light in the vicinity of 1.5 μm were investigated from points of view of the microstructure and electrical properties. The result of X-ray diffraction (XRD) pattern revealed that the crystal lattice of ZnO was apparently expanded by doping of Er ions. Electrical resistance in the direction of thickness of Er-doped ZnO film showed linear behavior, which was resemble to that of undoped ZnO film. Infrared light emission phenomenon of the film was related to the chemical / physical state of Er ions in ZnO matrix.

2006 ◽  
Vol 301 ◽  
pp. 189-192
Author(s):  
Yukari Ishikawa ◽  
Junichi Niitsuma ◽  
Shigeru Tanaka ◽  
Dai Nezaki ◽  
Mitsuhiro Okamoto ◽  
...  

In order to clarify the fundamental luminescent mechanism of undoped and Er-doped ZnO thin films synthesized by sputtering method, cathodoluminescence (CL) from the samples formed on several kinds of substrate were measured. There was no explicit peak identified with luminescence from ZnO crystal defects in undoped sample, on the contrary, three sharp luminescent peaks were observed in the case of Er-doped ZnO film due to the internal transition of the additive Er ions in the CL spectrum. The mechanism was investigated in comparison with photoluminescence (PL).


2007 ◽  
Vol 124-126 ◽  
pp. 339-342
Author(s):  
Gun Hee Kim ◽  
Hong Seong Kang ◽  
Dong Lim Kim ◽  
Hyun Woo Chang ◽  
Byung Du Ahn ◽  
...  

Cu-doped ZnO (denoted by ZnO:Cu) films have been prepared by pulsed laser deposition using 3 wt. CuO doped ZnO ceramic target. The carrier concentrations (1011~1018 cm-3) and, electrical resistivity (10-1~105 cm) of deposited Cu-doped ZnO thin films were varied depending on deposition conditions. Variations of electrical properties of Cu-doped ZnO indicate that copper dopants may play an important role in determining their electrical properties, compared with undoped films. To investigate effects of copper dopants on the properties of ZnO thin films, X-Ray diffraction (XRD), photoluminescence (PL), and Hall measurements have been performed and corresponded.


Author(s):  
Shigeru Tanaka ◽  
Yukari Ishikawa ◽  
Dai Nezaki ◽  
Mitsuhiro Okamoto ◽  
Noriyoshi Shibata

2006 ◽  
Vol 320 ◽  
pp. 113-116
Author(s):  
Shigeru Tanaka ◽  
Yukari Ishikawa ◽  
Naoki Ohashi ◽  
Junichi Niitsuma ◽  
Takashi Sekiguchi ◽  
...  

We have obtained Er-doped ZnO thin film in a micropattern of reverse trapezoids processed on Si substrate by sputtering and ultrafine polishing techniques. Near-infrared light emission was detected successfully from the thin film filling a single micropit with 10 μm square. Transmission electron microscopy (TEM) observation showed epitaxial growth of ZnO crystals along the curvature of the micropit.


2014 ◽  
Vol 29 (5) ◽  
pp. 275-280 ◽  
Author(s):  
P. J. Cao ◽  
W. J. Liu ◽  
F. Jia ◽  
Y. X. Zeng ◽  
D. L. Zhu ◽  
...  

2021 ◽  
Author(s):  
Chunhu Zhao ◽  
Junfeng Liu ◽  
Yixin Guo ◽  
Yanlin Pan ◽  
Xiaobo Hu ◽  
...  

Abstract Aluminum doped ZnO thin films (AZO), which simultaneously transmit light and conduct electrical current, are widely applied in photovoltaic devices. To achieve high performance AZO thin films, the effects of RF magnetron sputtering conditions on the optical and electrical properties of the films has been explored. The optimized AZO thin films exhibit strong (002) orientated growth with hexagonal wurtzite structure. The minimum resistivity of 0.9Í10-3 Ω·cm, the highest carrier concentration of 2.8Í1020 cm-3, the best Hall mobility of 22.8 cm2·(V·s)-1 and average transmittance above 85% can be achieved at the optimum deposition condition of 0.2 Pa, 120 W and 200 °C. Considering the single parabolic band model, the bandgap shift by carrier concentration of the films can be attributed to the Burstein-Moss effect. The results indicate that RF magnetron sputtered AZO thin films are promising for solar cell applications relying on front contact layers.


Sign in / Sign up

Export Citation Format

Share Document