Stress Analysis and Experimental Verification on Corroded Prestressed Concrete Beam

2006 ◽  
Vol 302-303 ◽  
pp. 676-683 ◽  
Author(s):  
Er Yu Zhu ◽  
Chun Liu ◽  
Li He ◽  
Hong Wei Zhang ◽  
Nan Xie

The paper presents a finite element analysis and static-load experimental verification on stress performance of corroded prestressed concrete bridge at Bai-Kong bridge of Shijiazhuang City on Beijing-Guangzhou Railway. At first, calculation of the actual bridge is simplified, mesh of the finite element of the bridge model is introduced, including the mesh of the finite element of undamaged bridge and the corroded bridge. For the situation above-mentioned, the finite element calculation result of the actual bridge is also presented in this paper. The graphic of the static load on the actual bridge and the testing spots distribution are described in this paper. Finally, the contrast between the static test result and the finite element calculation result is presented in this paper too.

2013 ◽  
Vol 804 ◽  
pp. 320-324
Author(s):  
Xiang Zan Xie

This paper adopts universal finite element calculation software to carry out finite element analysis for Tianerya trench-buried inverted siphon. Researching variation law of the inverted siphons stress and displacement in construction process and operational process. The calculation results further shown design schemes rationality and safety. The analysis results provide a certain reference for design of trench-buried inverted siphon structure.


2014 ◽  
Vol 788 ◽  
pp. 689-692
Author(s):  
Hong Guo ◽  
Yuan Yuan Han ◽  
Xi Min Zhang ◽  
Fa Zhang Yin ◽  
Ye Ming Fan ◽  
...  

The effect of diamond shape on the thermal conductivity of diamond/Cu composites was studied by combine finite element method with the tests. The finite element result show that the thermal conductivity of the hexoctahedron diamond/Cu composites and the square diamond/Cu composites is 819 W/m·K and 1013 W/m·K respectively. And the testing results indicate that the thermal conductivity of the single hexoctahedron diamond/Cu composites and the hexoctahedron mixed with the square diamond/Cu composites is 659W/m·K and 720 W/m·K respectively. The testing results consist with the finite element calculation. Under the same circumstances, more {100} faces can bring in less overall thermal resistance in the composites thus improve the thermal conductivity of the composites. The results show that using square diamond particles helps to improve the thermal conductivity of diamond/Cu composites.


2013 ◽  
Vol 712-715 ◽  
pp. 1111-1115
Author(s):  
Bei Li ◽  
Zhuan Wang ◽  
Yi Li Wang

A kind of calculating model was proposed according to the structure and load characteristics of push-back rack. On the basis of study on modeling and analysis technology using ANSYS, the finite element analysis of push-back rack was realized, which can provide reference to the design and calculation of push-back rack.


2011 ◽  
Vol 255-260 ◽  
pp. 1087-1091
Author(s):  
Xia Lin Yang ◽  
Lin Min Niu ◽  
Rong Ling Zhang ◽  
Guo Xiang Wei

Taken the Chongqing PC composite box girder with corrugated steel web for background , spatial finite element calculation model is set up by adopting the mixed unit, the influence about geometric parameters of corrugated steel perforation is analyzed by used linear and nonlinear finite element calculation of steel box girder .It shows that bending stress and warping stress was reduced by increasing the bending angle of corrugated steel webs of composite beams, while the buckling strength improved obviously; the ratio of the top slab and the floor slab maximum thickness of box girder to the corrugated steel perforation should be about 20; the mechanical properties of composite beams will be improved by reducing the length of straight slabs of corrugated steel webs.


2013 ◽  
Vol 394 ◽  
pp. 353-356
Author(s):  
Dongy Yu Ji

This paper adopts universal finite element calculation software to carry out force analysis for Nanping trench-buried inverted siphon,computer is applied in analysis of trench-buried inverted siphon. Deducing variation law of the inverted siphons stress and displacement in construction process and operational process. The calculation results further shown design schemes rationality and safety. which provide reliable reference of design and construction for the trench-buried inverted siphon.


2011 ◽  
Vol 243-249 ◽  
pp. 1737-1742 ◽  
Author(s):  
Ke Chen ◽  
Jian Yong Song ◽  
Shuo Zhang

The externally prestressed bridge finite element analysis module redeveloped based on ANSYS software is introduced,realizing finite element analysis method for externally prestressed concrete bridge. It is able to build the externally prestressed bridge finite element model, combined with Solid65 and Solid45 simulated concrete, and Link8 or Link10 simulated prestressed tendon. It is also able to bring material and geometric nonlinear effects into the analysis, for analyzing ultimate bearing capacity and local stress characterization of the externally prestressed structure. A bridge model is generated as an example for verifying the application of the module. Based on it, the model then is equipped with different allocation arrangements of internal and external tendons to analyze the mechanical characteristics of externally prestressed concrete bridge. Research is conducted for the effect on ultimate bearing capacity by allocation arrangement of tendons, and providing design suggestion and theoretic basis.


2013 ◽  
Vol 405-408 ◽  
pp. 1017-1021
Author(s):  
Feng Xu ◽  
Le Huang

The concrete simple supported beams were strengthened by an innovative device mainly includes oblique screws and linear CFRP tendons. A static experimental study and finite element analysis were conducted to research the flexural capacity and stress changes of CFRP tendons of strengthened beams, and the contrastive analysis was explored between finite element calculation results and test results. The results indicate that the strengthen system can significantly improve the flexural capacity of concrete beams, there is basically a linear relationship between the stress increment of CFRP tendon and the deflection of midspan section, and the finite element calculation value is in agreement with the test results. Based on this, the stress of concrete near holes was analysed using finite element method (FEM), which can provide a reference for practical engineering application.


2013 ◽  
Vol 785-786 ◽  
pp. 199-203 ◽  
Author(s):  
Gang Tong ◽  
Tong Fei Liu

The characteristics of the woven fabric laminates structure is described. The steps and method of building the woven fabric laminates structure finite element model in MSC Patran is provided. The accuracy of this method is verified by a group of finite element calculation and experimental data.


Sign in / Sign up

Export Citation Format

Share Document