Numerical Simulation of Humidity-Stress in Unsaturated Argillite Tunnel

2006 ◽  
Vol 306-308 ◽  
pp. 1409-1414
Author(s):  
Wei Zhong Chen ◽  
Fei Li ◽  
Guo Jun Wu ◽  
Shu Cai Li ◽  
Jian Fu Shao

An extension of Hoek-Brown criteria to include unsaturated behavior of argillite in porous medium is presented. The model is applied to simulate evolution of saturation degree in argillite and concrete in an experimental tunnel where field investigation of thermo-hydro-mechanical response of argillite and concrete will be done. Based on the laboratory experimental data, two different flow rules of water relative permeability and water saturation degree were suggested. The general evolution rules of saturation degree in argillite and concrete with time considering the effects ventilation are obtained.

Author(s):  
Thiago Piazera de Carvalho ◽  
Hervé P. Morvan ◽  
David Hargreaves

In aero engines, the oil and air interaction within bearing chambers creates a complex two-phase flow. Since most aero engines use a close-loop oil system and releasing oil out is not acceptable, oil-air separation is essential. The oil originates from the engine transmission, the majority of which is scavenged out from the oil pump. The remainder exits via the air vents, where it goes to an air oil separator called a breather. In metal-foam-style breathers separation occurs by two physical processes. Firstly the largest droplets are centrifuged against the separator walls. Secondly, smaller droplets, which tend to follow the main air path, pass through the metal foam where they ideally should impact and coalesce on the material filaments and drift radially outwards, by the action of centrifugal forces. Although these devices have high separation efficiency, it is important to understand how these systems work to continue to improve separation and droplet capture. One approach to evaluate separation effectiveness is by means of Computational Fluid Dynamics. Numerical studies on breathers are quite scarce and have always employed simplified porous media approaches where a momentum sink is added into the momentum equations in order to account for the viscous and/or inertial losses due to the porous zone [1]. Furthermore, there have been no attempts that the authors know of to model the oil flow inside the porous medium of such devices. Normally, breathers employ a high porosity open-cell metal foam as the porous medium. The aim of this study is to perform a pore-level numerical simulation on a representative elementary volume (REV) of the metal foam with the purpose of determining its transport properties. The pore scale topology is represented firstly by an idealized geometry, namely the Weaire-Phelan cell [2]. The pressure drop and permeability are determined by the solution of the Navier-Stokes equations. Additionally, structural properties such as porosity, specific surface area and pore diameter are calculated. The same procedure is then applied to a 3D digital representation of a metallic foam sample generated by X-ray tomography scans [3]. Both geometries are compared against each other and experimental data for validation. Preliminary simulations with the X-ray scanned model have tended to under predict the pressure drop when compared to in-house experimental data. Additionally, the few existing studies on flow in metal foams have tended to consider laminar flow; this is not the case here and this also raises the question that Reynolds-averaged turbulence models might not be well suited to flows at such small scales, which this paper considers.


Author(s):  
A. D. DROZDOV ◽  
N. DUSUNCELI

Observations are reported on isotactic polypropylene in tensile relaxation tests and in loading–unloading tests followed by relaxation after retraction at temperatures ranging from room temperatures up to 100°C. A two-phase constitutive model is developed for the mechanical response of semicrystalline polymers where crystalline and amorphous phases are treated as viscoelastoplastic continua with different laws of plastic flow. Adjustable parameters in the stress–strain relations are found by fitting the observations. Ability of the model to describe characteristic features of the viscoelastic and viscoplastic behavior of polypropylene at various temperatures is confirmed by numerical simulation and comparison of its results with experimental data in additional tests.


1964 ◽  
Vol 4 (03) ◽  
pp. 195-202 ◽  
Author(s):  
P.M. Blair

Abstract This paper presents numerical solutions of the equations describing the imbibition of water and the countercurrent flow of oil in porous rocks. The imbibition process is of practical importance in recovering oil from heterogeneous formations and has been studied principally by experimental means. Calculations were made for imbibition of water into both linear and radial systems. Imbibition in the linear systems was allowed to take place through one open, or permeable, face of the porous medium studied. In the radial system, water was imbibed inward from the outer radius. The effects on rate of imbibition of varying the capillary pressure and relative permeability curves, oil viscosity and the initial water saturation were computed. For each case studied, the rate of water imbibition and the saturation and pressure profiles were calculated as functions of time. The results of these calculations indicate that, for the porous medium studied, the time required to imbibe a fixed volume of water of a certain viscosity is approximately proportional to the square root of the viscosity of the reservoir oil whenever the oil viscosity is greater than the water viscosity. Results are also presented illustrating the effects on rate of imbibition of the other variables studied. Introduction The process of imbibition, or spontaneous flow of fluids in porous media under the influence of capillary pressure gradient s, occurs wherever there exist in permeable rock capillary pressure gradients which are not exactly balanced by opposing pressure gradients (such as those resulting from the influence of gravity). The importance of such capillary movement in the displacement of oil by water or gas was recognized in early investigations and described by Leverett, Lewis and True in 1942. Methods advanced by these authors for studying the process using dynamically scaled models were rendered more general and flexible by the research of later workers. The influence of capillary forces in laboratory water floods has also been discussed by several authors. While imbibition plays a very important role in the recovery of oil from normal reservoirs, Brownscombe and Dyes pointed out that imbibition might be the dominant displacement process in water flooding reservoirs characterized by drastic variations in permeability, such as in fractured- matrix reservoirs. In water-wet, fractured-matrix reservoirs, water will be imbibed from fractures into the matrix with a countercurrent expulsion of oil into the fractures. If the imbibition occurs at a sufficiently rapid rate, a very successful water flood can result; if the imbibition proceeds slowly the project might not be economically attractive. Scaled-model studies have demonstrated the vital importance of imbibition in secondary recovery in fractured reservoirs. It is therefore important in the evaluation of waterflooding prospects to develop a thorough understanding of the quantitative relationships of the factors which control the rapidity of capillary imbibition. The imbibition process serves reservoir engineers in still another important way by providing a technique for studying the wettability of reservoir core samples. Such experiments are usually conducted by observing the rate of expulsion of oil or water from core samples submerged in the appropriate fluid. Several papers have been published on the experimental techniques involved. Although Handy has recently published a method for calculating capillary pressures from experiments with gas-saturated cores, it has not yet been possible to deduce quantitative information regarding water-oil relative permeability and capillary pressure characteristics of the rock from the experimental results. Thus a technique is needed for studying the quantitative dependence of imbibition rate on oil and water viscosity, initial water saturation, relative permeability-saturation, and capillary pressure-saturation relations. The development of such information, including saturation and pressure profiles by laboratory experiments, would be very difficult. SPEJ P. 195ˆ


1970 ◽  
Vol 10 (04) ◽  
pp. 381-392 ◽  
Author(s):  
John D. Huppler

Abstract Numerical simulation techniques were used to investigate the effects of common core heterogeneities upon apparent waterflood relative-permeability results. Effects of parallel and series stratification, distributed high and low permeability lenses, and vugs were considered. permeability lenses, and vugs were considered. Well distributed heterogeneities have little effect on waterflood results, but as the heterogeneities become channel-like, their influence on flooding behavior becomes pronounced. Waterflooding tests at different injection rates are suggested as the best means of assessing whether heterogeneities are important. Techniques for testing stratified or lensed cores are recommended. Introduction Since best results from waterflood tests performed on core plugs are obtained with homogeneous cores, plugs selected for testing are chosen for their plugs selected for testing are chosen for their apparent uniformity. We know, however, that uniform appearance can be misleading. For example, flushing concentrated hydrochloric acid through an apparently homogeneous core plug often produces "wormholes" in higher permeability regions. Also, we sometimes find that all core plugs from a region of interest have obvious heterogeneities, so any flooding tests must be run on nonhomogeneous core plugs. plugs. Nevertheless, relative permeabilities, as obtained routinely from core waterflood data, are calculated using the assumption that the core is a homogeneous porous medium. While it is obvious that porous medium. While it is obvious that heterogeneties mill affect these apparent relative permeabilities, there appear to be no experimental permeabilities, there appear to be no experimental results reported in the literature to indicate just how serious the problem is. Accordingly, a computer simulation study of core waterfloods was conducted to systematically examine the effects of different sizes and types of core heterogeneities on flood results. The study was performed by numerical simulation using two-dimensional, two-phase difference equation approximations to describe the immiscible water-oil displacement. For each simulation the permeability and porosity distribution of the heterogeneous core to be studied was specified; fluid flow characteristics of the system, including a single set of input relative-permeabilities curves, were stipulated The system was set in capillary pressure equilibrium at the reducible water saturation. Then a waterflood simulation was performed. From the resulting fluid production and pressure-drop data a set of production and pressure-drop data a set of relative-permeability curves was calculated using the standard computational procedure applicable to homogeneous cores. In this paper these calculated relative-permeability curves are denoted as "waterflood" curves to distinguish them from the specified input curves. The waterflood relative-permeability curves should closely match the input curves for homogeneous systems. Since the same set of input relative-permeability curves was used for all rock sections, deviations of the waterflood from the input relative-permeability curves gave an indication of the effects of heterogeneities. When the system was heterogeneous and there was good agreement between waterflood and input relative-permeability curves, then the heterogeneities did not strongly influence the flow behavior and the system responded homogeneously. MATHEMATICAL MODEL AND METHOD The waterflood simulations were carried out using two-dimensional, two-phase difference equation approximations to the incompressible-flow differential equations:* .....................(1) ....................(2) SPEJ P. 381


SPE Journal ◽  
2018 ◽  
Vol 24 (02) ◽  
pp. 547-562 ◽  
Author(s):  
Harpreet Singh ◽  
Evgeniy M. Myshakin ◽  
Yongkoo Seol

Summary There are currently two types of relative permeability models that are used to model gas production from hydrate-bearing sediments: fully empirical parameter-fitting models [such as the University of Tokyo model (Masuda et al. 1997) and the Brooks and Corey model (Brooks and Corey 1964)] and partially empirical models [such as the Kozeny and Carman model (Wyllie and Gardner 1958) and capillary-tube-based models that assume only a single phase]. This study proposes an analytical model to estimate relative permeability of gas and water in a hydrate-bearing porous medium without curve fitting or use of any empirical parameters. The model is derived by conserving the momentum balance with the steady-state form of the Navier-Stokes equation for gas/water flow in a hydrate-bearing porous medium. The model is validated against a number of laboratory studies and is shown to perform better than most empirical models over a full range of experimental data. The proposed model is an analytical function of rock properties (average pore size and shape, porosity, irreducible water saturation, and saturation of hydrate), fluid properties (gas/water saturations and viscosities), and the hydrate-growth pattern [pore filling (PF), wall coating (WC), and a combination of PF and WC]. The benefits of the proposed model include sensitivity analysis of relevant physical parameters on relative permeability and estimation of rock parameters (such as porosity, pore size, and residual water saturation) using inverse modeling. The model can also be used to estimate two-phase permeability in a permeable medium without hydrates. The proposed model was used to analyze the effects of pore shapes, the hydrate-growth pattern, variable gas saturation, and wettability on relative permeability. The sensitivity results produced by the proposed model were verified using observations from other studies that investigated similar problems using either experiments or computationally expensive pore-scale simulations.


Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.


Sign in / Sign up

Export Citation Format

Share Document