scholarly journals Ability of Constitutive Models to Characterize the Temperature Dependence of Rubber Hyperelasticity and to Predict the Stress-Strain Behavior of Filled Rubber under Different Defor Mation States

Polymers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 369
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma

In this paper, some representative hyperelastic constitutive models of rubber materials were reviewed from the perspectives of molecular chain network statistical mechanics and continuum mechanics. Based on the advantages of existing models, an improved constitutive model was developed, and the stress–strain relationship was derived. Uniaxial tensile tests were performed on two types of filled tire compounds at different temperatures. The physical phenomena related to rubber deformation were analyzed, and the temperature dependence of the mechanical behavior of filled rubber in a larger deformation range (150% strain) was revealed from multiple angles. Based on the experimental data, the ability of several models to describe the stress–strain mechanical response of carbon black filled compound was studied, and the application limitations of some constitutive models were revealed. Combined with the experimental data, the ability of Yeoh model, Ogden model (n = 3), and improved eight-chain model to characterize the temperature dependence was studied, and the laws of temperature dependence of their parameters were revealed. By fitting the uniaxial tensile test data and comparing it with the Yeoh model, the improved eight-chain model was proved to have a better ability to predict the hyperelastic behavior of rubber materials under different deformation states. Finally, the improved eight-chain model was successfully applied to finite element analysis (FEA) and compared with the experimental data. It was found that the improved eight-chain model can accurately describe the stress–strain characteristics of filled rubber.

Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 932 ◽  
Author(s):  
Xintao Fu ◽  
Zepeng Wang ◽  
Lianxiang Ma ◽  
Zhaoxuan Zou ◽  
Qingling Zhang ◽  
...  

Rubber-based materials are widely used in a variety of industrial applications. In these applications, rubber components withstand various loading conditions over a range of temperatures. It is of great significance to study the mechanical behavior of vulcanized rubber at different temperatures, especially in a range of high temperatures. The temperature dependence of the constitutive behavior of filled rubber is important for the performance of the rubber. However, only a few constitutive models have been reported that investigate the stress–temperature relationship. In this paper, based on an analysis of experimental data, the effects of temperature on the hyperelastic behaviors of both natural rubber and filled rubber, with different mass fractions of carbon black, were studied. The regulation of stress and strain of natural rubber and filled rubber with temperature was revealed. In addition, an eight-chain model that can reasonably characterize the experimental data at different temperatures was proved. An explicit temperature-dependent constitutive model was developed based on the Arruda-Boyce model to describe the stress–strain response of filled rubber in a relatively large temperature range. Meanwhile, it was proved that the model can predict the effect of temperature on the hyperelastic behavior of filled rubber. Finally, the improved Arruda-Boyce model was used to obtain the material parameters and was then successfully applied to finite element analysis (FEA), which showed that the model has high application value. In addition, the model had a simple form and could be conveniently applied in related performance test of actual production or finite element analysis.


2018 ◽  
Vol 7 (4.26) ◽  
pp. 245 ◽  
Author(s):  
Kamarul Nizam Hassan ◽  
Jamaluddin Mahmud ◽  
Anwar P.P. Abdul Majeed ◽  
Mohd Azman Yahya

The utilisation of bamboo has the potential of improving the properties of silicone. However, a thorough investigation has yet to be reported on the mechanical properties of bamboo silicone biocomposite. This study was carried out with the aim to quantify the tensile properties and assess the tensile behaviour of bamboo silicone biocomposite using Yeoh hyperelastic constitutive function. The specimens were prepared from the mix of bamboo particulate and pure silicone at various fibre composition ratio (0wt%, 1wt%, 3wt% and 5wt%) cured overnight at room temperature. A uniaxial tensile test was carried out by adopting the ASTM D412 testing standard. The Coefficient of Variation, CV, and the Coefficient of Determination, r2, were determined to assess the reliability of the experimental data and fitting model. The results of the determined Yeoh material constants for 5wt% specimen is found to be C1 = 12.0603×10-3 MPa, C2 = 8.7353×10-5 MPa and C3 = -11.6165×10-8 MPa, compared to pure silicone (0wt%) C1 = 5.6087×10-3 MPa, C2 = 8.6639×10-5 MPa and C3 = -7.6510×10-8 MPa. The results indicate that the bamboo fibre improves the stiffness of the silicone rubber by 115 percent. A low variance was exhibited by the experimental data with a CV value of less than 8 percent. The Yeoh Model demonstrated an excellent prediction of the elastic behaviour of bamboo silicone biocomposite with a fitting accuracy of more than 99.93 percent.  


2017 ◽  
Vol 50 (6) ◽  
pp. 554-575
Author(s):  
Eduardo Guilherme Mötke Wrubleski ◽  
Rogério Marczak

Several authors have proposed different parameters to include the softening effect in hyperelastic models; however, for a number of materials, softening parameters could be further improved. This article proposes a new softening parameter to include Mullins effect in hyperelastic material models. The methodology employed can be also used in cases with hysteresis or damage in a hyperelastic material, however this methodology modifies the behavior of the material differently from damage theories. Common hyperelastic constitutive models do not include dissipation effects and so the present work intends to fill this gap. Experimental data for silicone in uniaxial tensile test, equibiaxial, and pure shear tests were modeled in order to calibrate the models. The softening parameters essentially changes the constitutive law from the loading to the unloading path. Therefore, it is still necessary to use a hyperelastic model, and here Ogden and Hoss-Marczak material models were used. The obtained results show good agreement with experimental data even when simulating with a compressible finite element code and it can model isotropic Mullins effect.


2018 ◽  
Vol 37 (9-10) ◽  
pp. 873-888 ◽  
Author(s):  
Nitin Kotkunde ◽  
Hansoge Nitin Krishnamurthy ◽  
Swadesh Kumar Singh ◽  
Gangadhar Jella

AbstractA thorough understanding of hot deformation behavior plays a vital role in determining process parameters of hot working processes. Firstly, uniaxial tensile tests have been performed in the temperature ranges of 150 °C–600 °C and strain rate ranges of 0.0001–0.01s−1 for analyzing the deformation behavior of ASS 304 and ASS 316. The phenomenological-based constitutive models namely modified Fields–Backofen (m-FB) and Khan–Huang–Liang (KHL) have been developed. The prediction capability of these models has been verified with experimental data using various statistical measures. Analysis of statistical measures revealed KHL model has good agreement with experimental flow stress data. Through the flow stresses behavior, the processing maps are established and analyzed according to the dynamic materials model (DMM). In the processing map, the variation of the efficiency of the power dissipation is plotted as a function of temperature and strain rate. The processing maps results have been validated with experimental data.


Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2801 ◽  
Author(s):  
Ayman El-Zohairy ◽  
Hunter Hammontree ◽  
Eddie Oh ◽  
Perry Moler

Concrete is one of the most common and versatile construction materials and has been used under a wide range of environmental conditions. Temperature is one of them, which significantly affects the performance of concrete, and therefore, a careful evaluation of the effect of temperature on concrete cannot be overemphasized. In this study, an overview of the temperature effect on the compressive behavior of plain hardened concrete is experimentally provided. Concrete cylinders were prepared, cured, and stored under different temperature conditions to be tested under compression. The stress–strain curve, mode of failure, compressive strength, ultimate strain, and modulus of elasticity of concrete were evaluated between the ages of 7 and 90 days. The experimental results were used to propose constitutive models to predict the mechanical properties of concrete under the effect of temperature. Moreover, previous constitutive models were examined to capture the stress–strain relationships of concrete under the effect of temperature. Based on the experimental data and the proposed models, concrete lost 10–20% of its original compressive strength when heated to 100 °C and 30–40% at 260 °C. The previous constitutive models for stress–strain relationships of concrete at normal temperatures can be used to capture these relationships under the effect of temperature by using the compressive strength, ultimate strain, and modulus of elasticity affected by temperature. The effect of temperature on the modulus of elasticity of concrete was considered in the ACI 318-14 equation by using the compressive strength affected by temperature and the results showed good agreement with the experimental data.


2014 ◽  
Vol 540 ◽  
pp. 48-51
Author(s):  
Xia Ren ◽  
Lian Xiang Ma

This paper uses the ABAQUS finite element analysis software for modeling and nonlinear analysis of aircraft tires. Paper H44.5 × 16.5-21 aviation tires, The plastic material of the tire subjected to uniaxial stretching to obtain a rubber such as Young's modulus, Poisson's ratio of the material parameters. Uniaxial tensile test tests the tensile properties of the rubber, the use of large-scale numerical calculations and fitting analysis of the experimental data analysis software Matlab, Yeoh model mechanical parameters.


2009 ◽  
Vol 37 (2) ◽  
pp. 159-174
Author(s):  
O. Ifedi ◽  
Q. M. Li ◽  
Y. B. Lu

In plasticity theory, the effective stress–strain curve of a metal is independent of the loading path. The simplest loading path to obtain the effective stress–strain curve is a uniaxial tensile test. In order to demonstrate in a plasticity laboratory that the stress–strain curve is independent of the loading path, the hydrostatic bulge test has been used to provide a balanced biaxial tensile stress state. In our plasticity laboratory we compared several different theories for the hydrostatic bulge test for the determination of the effective stress–strain curve for two representative metals, brass and aluminium alloy. Finite element analysis (FEA) was performed based on the uniaxial tension test data. It was shown that the effective stress–strain curve obtained from the biaxial tensile test (hydrostatic bulge test) had a good correlation with that obtained in the uniaxial tensile test and agreed well with the analytical and FEA results. This paper may be used to support an experimental and numerical laboratory in teaching the concepts of effective stress and strain in plasticity theory.


2017 ◽  
Vol 900 ◽  
pp. 12-16
Author(s):  
Nurul Nadiah Azmi ◽  
Ahmad Kamil Hussain ◽  
Jamaluddin Mahmud

Silicone rubber is widely used in various fields but has low strength, whereas kenaf has higher strength. Therefore, this study aims to synthesise a new material that consists of both kenaf and silicone with three different variances and determine its properties using the three most common hyperelastic constitutive models: Neo-Hookean, Mooney-Rivlin and Ogden. In order to obtain the material constant of kenaf silicone biocomposite, experimental and numerical approaches are adapted. The xperimental approach involves synthesising of kenaf silicone biocomposite and uniaxial tensile test, while the numerical approach involves curve fitting method using an excel programme. Curve fitting method was used because the raw data from tensile test alone could not determine the material constant of agar silicone biocomposite. The results show that the numerical value of the material constant increases as the percentage of the reinforcement material (kenaf) increases. However, the tensile strength of the material decreases as the reinforcement material increases.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 221-228
Author(s):  
Ljudmila Kudrjavceva ◽  
Milan Micunovic ◽  
Marko Topalovic ◽  
Simon Sedmak

Thermomechanical behavior of hot mix asphalt (HMA) is considered. Its highly irregular microstructure is covered by the hierarchical approach. A brief survey of endochronic thermodynamics precedes constitutive consideration. Two constitutive models are discussed: classical Perzyna?s approach and tensor representation based approach. The second is superior due to its possibility to cover properly diverse multiaxial nonproportioal stress-strain histories. However, due to availability of experimental data the first model is applied to rutting problem through Abaqus FEM code with material user subroutine developed by the authors. Vakulenko?s thermodynamic time appropriate for aging is incorporated. Hyperelasticviscoplastic behavior is considered and some preliminary results are presented.


2021 ◽  
Vol 91 (10) ◽  
pp. 4097-4119
Author(s):  
Alexander Ricker ◽  
Nils Hendrik Kröger ◽  
Peter Wriggers

AbstractThe Mullins effect is a characteristic property of filled rubber materials whose accurate and efficient modelling is still a challenging task. Innumerable constitutive models for elastomers are described in the literature. Therefore, this contribution gives a review on some widely used approaches, presents a classification, proves their thermodynamic consistency, and discusses reasonable modifications. To reduce the wide range of models, the choice is restricted to those which reproduce the idealised, discontinuous Mullins effect. Apart from the theoretical considerations, two compounds were produced and tested under cyclic uniaxial and equibiaxial tension as well as pure shear. Based on this experimental data, a benchmark that compares the fitting quality of the discussed models is compiled and favourable approaches are identified. The results are a sound basis for establishing novel or improving existing rubber models.


Sign in / Sign up

Export Citation Format

Share Document