Calculation of Oil Displacement by Countercurrent Water Imbibition

1964 ◽  
Vol 4 (03) ◽  
pp. 195-202 ◽  
Author(s):  
P.M. Blair

Abstract This paper presents numerical solutions of the equations describing the imbibition of water and the countercurrent flow of oil in porous rocks. The imbibition process is of practical importance in recovering oil from heterogeneous formations and has been studied principally by experimental means. Calculations were made for imbibition of water into both linear and radial systems. Imbibition in the linear systems was allowed to take place through one open, or permeable, face of the porous medium studied. In the radial system, water was imbibed inward from the outer radius. The effects on rate of imbibition of varying the capillary pressure and relative permeability curves, oil viscosity and the initial water saturation were computed. For each case studied, the rate of water imbibition and the saturation and pressure profiles were calculated as functions of time. The results of these calculations indicate that, for the porous medium studied, the time required to imbibe a fixed volume of water of a certain viscosity is approximately proportional to the square root of the viscosity of the reservoir oil whenever the oil viscosity is greater than the water viscosity. Results are also presented illustrating the effects on rate of imbibition of the other variables studied. Introduction The process of imbibition, or spontaneous flow of fluids in porous media under the influence of capillary pressure gradient s, occurs wherever there exist in permeable rock capillary pressure gradients which are not exactly balanced by opposing pressure gradients (such as those resulting from the influence of gravity). The importance of such capillary movement in the displacement of oil by water or gas was recognized in early investigations and described by Leverett, Lewis and True in 1942. Methods advanced by these authors for studying the process using dynamically scaled models were rendered more general and flexible by the research of later workers. The influence of capillary forces in laboratory water floods has also been discussed by several authors. While imbibition plays a very important role in the recovery of oil from normal reservoirs, Brownscombe and Dyes pointed out that imbibition might be the dominant displacement process in water flooding reservoirs characterized by drastic variations in permeability, such as in fractured- matrix reservoirs. In water-wet, fractured-matrix reservoirs, water will be imbibed from fractures into the matrix with a countercurrent expulsion of oil into the fractures. If the imbibition occurs at a sufficiently rapid rate, a very successful water flood can result; if the imbibition proceeds slowly the project might not be economically attractive. Scaled-model studies have demonstrated the vital importance of imbibition in secondary recovery in fractured reservoirs. It is therefore important in the evaluation of waterflooding prospects to develop a thorough understanding of the quantitative relationships of the factors which control the rapidity of capillary imbibition. The imbibition process serves reservoir engineers in still another important way by providing a technique for studying the wettability of reservoir core samples. Such experiments are usually conducted by observing the rate of expulsion of oil or water from core samples submerged in the appropriate fluid. Several papers have been published on the experimental techniques involved. Although Handy has recently published a method for calculating capillary pressures from experiments with gas-saturated cores, it has not yet been possible to deduce quantitative information regarding water-oil relative permeability and capillary pressure characteristics of the rock from the experimental results. Thus a technique is needed for studying the quantitative dependence of imbibition rate on oil and water viscosity, initial water saturation, relative permeability-saturation, and capillary pressure-saturation relations. The development of such information, including saturation and pressure profiles by laboratory experiments, would be very difficult. SPEJ P. 195ˆ

1999 ◽  
Vol 2 (01) ◽  
pp. 25-36 ◽  
Author(s):  
A.B. Dixit ◽  
S.R. McDougall ◽  
K.S. Sorbie ◽  
J.S. Buckley

Summary The wettability of a crude oil/brine/rock system influences both the form of petrophysical parameters (e.g., Pc and krw/kro) and the structure and distribution of remaining oil after secondary recovery. This latter issue is of central importance for improved oil recovery since it represents the "target" oil for any IOR process. In the present study, we have developed a three-dimensional network model to derive capillary pressure curves from nonuniformly wetted (mixed and fractionally wet) systems. The model initially considers primary drainage and the aging process leading to wettability alterations. This is then followed by simulations of spontaneous water imbibition, forced water drive, spontaneous oil imbibition and forced oil drive—i.e., we consider a complete flooding sequence characteristic of wettability experiments. The model takes into account many pore level flow phenomena such as film flow along wetting phase clusters, trapping of wetting and nonwetting phases by snapoff and bypassing. We also consider realistic variations in advancing and receding contact angles. There is a discussion of the effects of additional parameters such as the fraction of oil-wet pores, mean coordination number and pore size distribution upon fractionally and mixed wet capillary pressure curves. Moreover, we calculate Amott oil and water indices using the simulated curves. Results indicate that oil recovery via water imbibition in weakly water-wet cores can often exceed that obtained from strongly water-wet samples. Such an effect has been observed experimentally in the past. The basic physics governing this enhancement in spontaneous water imbibition can be explained using the concept of a capillarity surface. Based on these theoretical calculations, we propose a general "regime based" theory of wettability classification and analysis. We classify a range of experimentally observed and apparently inconsistent waterflood recovery trends into various regimes, depending upon the structure of the underlying oil- and water-wet pore clusters and the distribution of contact angles. Using this approach, numerous published experimental Amott indices and waterflood data from a variety of core/crude oil/brine systems are analyzed. Introduction In crude oil/brine/rock (COBR) systems, pore level displacements of oil and brine and hence the corresponding petrophysical flow parameters (e.g., Pc and krw/kro) describing these displacements are governed by the pore geometry, topology and wettability of the system. A number of excellent review papers are available that describe experimental investigations of the effect of wettability on capillary pressure and oil-water relative permeability curves.1–5 In COBR systems, wettability alterations depend upon the mineralogical composition of the rock, pH and/or composition of the brine, crude oil composition, initial water saturation, reservoir temperature, etc.6–12 Therefore, in recent years, interest in restoring the wettability of reservoir core using crude oil and formation brine has greatly increased.3,4,13,14 In this approach, cleaned reservoir core is first saturated with brine and then oil flooded to initial water saturation using crude oil. The core containing crude oil and brine is then aged to alter its wettability state. Wettability measurements, such as Amott and USBM tests, and waterflood experiments are then typically conducted on the aged core. This entire process broadly mimics the actual flow sequences in the reservoir; consequently, the wettability alterations are more realistic than those achieved using chemical treatment methods. During the aging process, wettability may be altered to vastly different degrees depending upon many factors, including those mentioned above. In addition, aging time, thickness of existing water films and wetting film disjoining pressure isotherms also play important roles. Hence, the final wettability state of a re-conditioned core will generally be case specific.


2006 ◽  
Vol 9 (04) ◽  
pp. 295-301 ◽  
Author(s):  
Kewen Li ◽  
Kevin Chow ◽  
Roland N. Horne

Summary It has been a challenge to understand why recovery by spontaneous imbibition could both increase and decrease with initial water saturation. To this end, mathematical models were developed with porosity, permeability, viscosity, relative permeability, capillary pressure, and initial water saturation included. These equations foresee that recovery and imbibition rate can increase, remain unchanged, or decrease with an increase in initial water saturation, depending on rock properties, the quantity of residual gas saturation, the range of initial water saturation, and the units used in the definitions of gas recovery and imbibition rate. The theoretical predictions were verified experimentally by conducting spontaneous water imbibition at five different initial water saturations, ranging from 0 to approximately 50%. The effects of initial water saturation on residual saturation, relative permeability, capillary pressure, imbibition rate, and recovery in gas/water/rock systems by cocurrent spontaneous imbibition were investigated both theoretically and experimentally. Water-phase relative permeabilities and capillary pressures were calculated with the experimental data of spontaneous imbibition. Experimental results in different rocks were compared. Introduction Spontaneous water imbibition is an important mechanism during water injection. Prediction of recovery and imbibition rate by spontaneous water imbibition is essential to evaluate the feasibility and the performance of water injection. For example, is water injection effective in the case of high initial water saturation in reservoirs? Answers to such a question may be found by investigating the effect of initial water saturation on spontaneous water imbibition. It has been observed experimentally that initial water saturation affects recovery and production rate significantly (Blair 1964; Zhou et al. 2000; Viksund et al. 1998; Cil et al. 1998; Tong et al. 2001; Li and Firoozabadi 2000; Akin et al. 2000). However, the experimental observations from different authors (Zhou et al. 2000; Cil et al. 1998; Li and Firoozabadi 2000; Akin et al. 2000) are not consistent. On the other hand, few studies have investigated the effect of initial water saturation on recovery and imbibition rate theoretically, especially in gas reservoirs. Using numerical-simulation techniques, Blair (1964) found that the quantity and the rate of oil produced after a given period of imbibition increased with a decrease in initial water saturation for countercurrent spontaneous imbibition. Zhou et al. (2000) found that both imbibition rate and final oil recovery in terms of oil originally in place (OOIP) increased with an increase in initial water saturation, whereas oil recovery by waterflooding decreased. Viksund et al. (1998) found that the final oil recovery (OOIP) by spontaneous water imbibition in Berea sandstone showed little variation with a change in initial water saturation from 0 to approximately 30%. For the chalk samples tested by Viksund et al. (1998), the imbibition rate first increased with an increase in initial water saturation and then decreased slightly as initial water saturation increased above 34%.Cil et al. (1998) reported that the oil recovery (in terms of recoverable oil reserves) for zero and 20% initial water saturation showed insignificant differences in behavior. However, the oil recovery for initial water saturation above 20% increased with an increase in initial water saturation. Li and Firoozabadi (2000) found that the final gas recovery in the units of gas originally in place (GOIP) by spontaneous imbibition decreased with an increase in initial water saturation in both gas/oil/rock and gas/water/rock systems. The imbibition rate (GOIP/min) increased with an increase in initial water saturation at early time but decreased at later time. Akin et al. (2000) found that the residual oil saturation was unaffected significantly by initial water saturation. In this study, equations, derived theoretically, were used to study the effect of initial water saturation on gas recovery and imbibition rate. The equations correlate recovery, imbibition rate, initial water saturation, rock/fluid properties, and other parameters. Experiments of spontaneous water imbibition in gas-saturated rocks were conducted to confirm the theoretical predictions. The effect of rock properties on gas recovery and imbibition rate was also studied. An X-ray CT scanner was used to monitor the distribution of the initial water saturation to confirm that the initial distribution of the water saturation was uniform. In this study, we only focused on cocurrent spontaneous imbibition. It was assumed that there were no chemical reactions or mass transfer between gas and liquid.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Olugbenga Falode ◽  
Edo Manuel

An understanding of the mechanisms by which oil is displaced from porous media requires the knowledge of the role of wettability and capillary forces in the displacement process. The determination of representative capillary pressure (Pc) data and wettability index of a reservoir rock is needed for the prediction of the fluids distribution in the reservoir: the initial water saturation and the volume of reserves. This study shows how wettability alteration of an initially water-wet reservoir rock to oil-wet affects the properties that govern multiphase flow in porous media, that is, capillary pressure, relative permeability, and irreducible saturation. Initial water-wet reservoir core samples with porosities ranging from 23 to 33%, absolute air permeability of 50 to 233 md, and initial brine saturation of 63 to 87% were first tested as water-wet samples under air-brine system. This yielded irreducible wetting phase saturation of 19 to 21%. The samples were later tested after modifying their wettability to oil-wet using a surfactant obtained from glycerophtalic paint; and the results yielded irreducible wetting phase saturation of 25 to 34%. From the results of these experiments, changing the wettability of the samples to oil-wet improved the recovery of the wetting phase.


SIMULATION ◽  
2019 ◽  
pp. 003754971985713 ◽  
Author(s):  
Zhenzihao Zhang ◽  
Turgay Ertekin

This study developed a data-driven forecasting tool that predicts petrophysical properties from rate-transient data. Traditional estimations of petrophysical properties, such as relative permeability (RP) and capillary pressure (CP), strongly rely on coring and laboratory measurements. Coring and laboratory measurements are typically conducted only in a small fraction of wells. To contend with this constraint, in this study, we develop artificial neural network (ANN)-based tools that predict the three-phase RP relationship, CP relationship, and formation permeability in the horizontal and vertical directions using the production rate and pressure data for black-oil reservoirs. Petrophysical properties are related to rate-transient data as they govern the fluid flow in oil/gas reservoirs. An ANN has been proven capable of mimicking any functional relationship with a finite number of discontinuities. To generate an ANN representing the functional relationship between rate-transient data and petrophysical properties, an ANN structure pool is first generated and trained. Cases covering a wide spectrum of properties are then generated and put into training. Training of ANNs in the pool and comparisons among their performance yield the desired ANN structure that performs the most effectively among the ANNs in the pool. The developed tool is validated with blind tests and a synthetic field case. Reasonable predictions for the field cases are obtained. Within a fraction of second, the developed ANNs infer accurate characteristics of RP and CP for three phases as well as residual saturation, critical gas saturation, connate water saturation, and horizontal permeability with a small margin of error. The predicted RP and CP relationship can be generated and applied in history matching and reservoir modeling. Moreover, this tool can spare coring expenses and prolonged experiments in most of the field analysis. The developed ANNs predict the characteristics of three-phase RP and CP data, connate water saturation, residual oil saturation, and critical gas saturation using rate-transient data. For cases fulfilling the requirement of the tool, the proposed technique improves reservoir description while reducing expenses and time associated with coring and laboratory experiments at the same time.


2005 ◽  
Vol 127 (3) ◽  
pp. 240-247 ◽  
Author(s):  
D. Brant Bennion ◽  
F. Brent Thomas

Very low in situ permeability gas reservoirs (Kgas<0.1mD) are very common and represent a major portion of the current exploitation market for unconventional gas production. Many of these reservoirs exist regionally in Canada and the United States and also on a worldwide basis. A considerable fraction of these formations appear to exist in a state of noncapillary equilibrium (abnormally low initial water saturation given the pore geometry and capillary pressure characteristics of the rock). These reservoirs have many unique challenges associated with the drilling and completion practices required in order to obtain economic production rates. Formation damage mechanisms affecting these very low permeability gas reservoirs, with a particular emphasis on relative permeability and capillary pressure effects (phase trapping) will be discussed in this article. Examples of reservoirs prone to these types of problems will be reviewed, and techniques which can be used to minimize the impact of formation damage on the productivity of tight gas reservoirs of this type will be presented.


SPE Journal ◽  
2012 ◽  
Vol 18 (02) ◽  
pp. 296-308 ◽  
Author(s):  
Y.. Zhou ◽  
J.O.. O. Helland ◽  
D.G.. G. Hatzignatiou

Summary It has been demonstrated experimentally that Leverett's J-function yields almost unique dimensionless drainage capillary pressure curves in relatively homogeneous rocks at strongly water-wet conditions, whereas for imbibition at mixed-wet conditions, it does not work satisfactorily because the permeability dependency on capillary pressure has been reported to be weak. The purpose of this study is to formulate a new dimensionless capillary pressure function for mixed-wet conditions on the basis of pore-scale modeling, which could overcome these restrictions. We simulate drainage, wettability alteration, and imbibition in 2D rock images by use of a semianalytical pore-scale model that represents the identified pore spaces as cross sections of straight capillary tubes. The fluid configurations occurring during drainage and imbibition in the highly irregular pore spaces are modeled at any capillary pressure and wetting condition by combining the free-energy minimization with an arc meniscus (AM)-determining procedure that identifies the intersections of two circles moving in opposite directions along the pore boundary. Circle rotation at pinned contact lines accounts for mixed-wet conditions. Capillary pressure curves for imbibition are simulated for different mixed-wet conditions in Bentheim sandstone samples, and the results are scaled by a newly proposed improved J-function that accounts for differences in formation wettability induced by different initial water saturations after primary drainage. At the end of primary drainage, oil-wet-pore wall segments are connected by many water-wet corners and constrictions that remain occupied by water. The novel dimensionless capillary pressure expression accounts for these conditions by introducing an effective contact angle that depends on the initial water saturation and is related to the wetting property measured at the core scale by means of a wettability index. The accuracy of the proposed J-function is tested on 36 imbibition capillary pressure curves for different mixed-wet conditions that are simulated with the semianalytical model in scanning-electron-microscope (SEM) images of Bentheim sandstone. The simulated imbibition capillary pressure curves and the reproduced curves, based on the proposed J-function, are in good agreement for the mixed-wet conditions considered in this study. The detailed behavior is explained by analyzing the fluid displacements occurring in the pore spaces. It is demonstrated that the proposed J-function could be applied to mixed-wet conditions to generate a family of curves describing different wetting states induced by assigning different wetting properties on the solid surfaces or by varying the initial water saturation after primary drainage. The variability of formation wettability and permeability could be described more accurately in reservoir-simulation models by means of the proposed J-function, and hence the opportunity arises for improved evaluation of core-sample laboratory experiments and reservoir performance.


2007 ◽  
Vol 10 (06) ◽  
pp. 730-739 ◽  
Author(s):  
Genliang Guo ◽  
Marlon A. Diaz ◽  
Francisco Jose Paz ◽  
Joe Smalley ◽  
Eric A. Waninger

Summary In clastic reservoirs in the Oriente basin, South America, the rock-quality index (RQI) and flow-zone indicator (FZI) have proved to be effective techniques for rock-type classifications. It has long been recognized that excellent permeability/porosity relationships can be obtained once the conventional core data are grouped according to their rock types. Furthermore, it was also observed from this study that the capillary pressure curves, as well as the relative permeability curves, show close relationships with the defined rock types in the basin. These results lead us to believe that if the rock type is defined properly, then a realistic permeability model, a unique set of relative permeability curves, and a consistent J function can be developed for a given rock type. The primary purpose of this paper is to demonstrate the procedure for implementing this technique in our reservoir modeling. First, conventional core data were used to define the rock types for the cored intervals. The wireline log measurements at the cored depths were extracted, normalized, and subsequently analyzed together with the calculated rock types. A mathematical model was then built to predict the rock type in uncored intervals and in uncored wells. This allows the generation of a synthetic rock-type log for all wells with modern log suites. Geostatistical techniques can then be used to populate the rock type throughout a reservoir. After rock type and porosity are populated properly, the permeability can be estimated by use of the unique permeability/porosity relationship for a given rock type. The initial water saturation for a reservoir can be estimated subsequently by use of the corresponding rock-type, porosity, and permeability models as well as the rock-type-based J functions. We observed that a global permeability multiplier became unnecessary in our reservoir-simulation models when the permeability model is constructed with this technique. Consistent initial-water-saturation models (i.e., calculated and log-measured water saturations are in excellent agreement) can be obtained when the proper J function is used for a given rock type. As a result, the uncertainty associated with volumetric calculations is greatly reduced as a more accurate initial-water-saturation model is used. The true dynamic characteristics (i.e., the flow capacity) of the reservoir are captured in the reservoir-simulation model when a more reliable permeability model is used. Introduction Rock typing is a process of classifying reservoir rocks into distinct units, each of which was deposited under similar geological conditions and has undergone similar diagenetic alterations (Gunter et al. 1997). When properly classified, a given rock type is imprinted by a unique permeability/porosity relationship, capillary pressure profile (or J function), and set of relative permeability curves (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993). As a result, when properly applied, rock typing can lead to the accurate estimation of formation permeability in uncored intervals and in uncored wells; reliable generation of initial-water-saturation profile; and subsequently, the consistent and realistic simulation of reservoir dynamic behavior and production performance. Of the various quantitative rock-typing techniques (Gunter et al. 1997; Hartmann and Farina 2004; Amaefule et al. 1993; Porras and Campos 2001; Jennings and Lucia 2001; Rincones et al. 2000; Soto et al. 2001) presented in the literature, two techniques (RQI/FZI and Winland's R35) appear to be used more widely than the others for clastic reservoirs (Gunter et al. 1997, Amaefule et al. 1993). In the RQI/FZI approach (Amaefule et al. 1993), rock types are classified with the following three equations: [equations]


1969 ◽  
Vol 47 (22) ◽  
pp. 2519-2524 ◽  
Author(s):  
A. P. Verma

In this paper, one special case of oil–water imbibition phenomena in a cracked porous medium of a finite length is analytically discussed. The equation for the linear countercurrent imbibition is a nonlinear differential equation whose solution has been obtained by a perturbation technique. For definiteness, specific results have been used for the relationship between relative permeability and phase saturation) impregnation function, oil–water viscosity ratio, and capillary pressure dependence on phase saturation due to Jones, Bokserman et al., Evgen'ev, and Oroveanu, respectively. An expression for the wetting phase saturation has been derived.


1990 ◽  
Vol 112 (4) ◽  
pp. 239-245 ◽  
Author(s):  
S. D. L. Lekia ◽  
R. D. Evans

This paper presents a new approach for the analyses of laboratory-derived capillary pressure data for tight gas sands. The method uses the fact that a log-log plot of capillary pressure against water saturation is a straight line to derive new expressions for both wetting and nonwetting phase relative permeabilities. The new relative permeability equations are explicit functions of water saturation and the slope of the log-log straight line of capillary pressure plotted against water saturation. Relative permeabilities determined with the new expressions have been successfully used in simulation studies of naturally fractured tight gas sands where those determined with Corey-type expressions which are functions of reduced water saturation have failed. A dependence trend is observed between capillary pressure and gas permeability data from some of the tight gas sands of the North American Continent. The trend suggests that the lower the gas permeability, the higher the capillary pressure values at the same wetting phase saturation—especially for saturations less than 60 percent.


Sign in / Sign up

Export Citation Format

Share Document