Behavior of Lightweight Piezoceramic Composite Actuator under Compressive Load

2006 ◽  
Vol 326-328 ◽  
pp. 1403-1406
Author(s):  
Quoc Viet Nguyen ◽  
Nam Seo Goo ◽  
Hoon Cheol Park

In this work, behavior of a unimorph piezoceramic actuator, LIPCA (Lightweight Piezo- Composite Actuator) has been numerically and experimentally investigated. By measuring the lateral displacement created by the compressive load, the buckling load of the LIPCA was determined. Under simply supported configuration, the measured buckling load agreed well with the geometrically nonlinear buckling load from the finite element analysis. The measured data shows that the lateral displacement of the LIPCA is significantly increased when the electric field is prescribed to the LIPCA in addition to the compressive load. The measured data was compared with the computed results from the geometrically nonlinear finite element analysis. The numerical simulation agreed well with the measurement for low compressive load and low electric field.

2013 ◽  
Vol 838-841 ◽  
pp. 284-296
Author(s):  
Yu Hua Wang ◽  
Bei Bei Wang ◽  
Pei Chi ◽  
Jun Dong

The finite element analysis method was adopted to simulate the masonry wall strengthened with steel strips and was verified by comparing with test results. The influence rules of two factors including the cross sectional area of steel strips and vertical compression were investigated. The results show that, as for unreinforced masonry wall, the relationship of the shear capacity of unreinforced masonry wall and the vertical compressive strain is linear under lateral load; the speed of stiffness degeneration is accelerated after the peak point of the curves, but decrease with the increasing of lateral displacement. As for masonry wall strengthened with steel strips, the shear capacity increases significantly, and shows nonlinear relationship with the cross section area of the steel strips and vertical compression; ductility is improved. Finally, a computational formula of shear capacity based on a lot of parametric analysis is proposed to calculate the sectional dimension of steel strips, and it provides theoretical foundation for establishing thorough design method of masonry wall strengthened with steel strips.


Sign in / Sign up

Export Citation Format

Share Document