Effect of Annealing Temperature on Microstructure and Properties of Surface Nanocrystalline Structure in Low Carbon Steel Specimen

2007 ◽  
Vol 353-358 ◽  
pp. 1601-1604
Author(s):  
Xin Min Fan ◽  
Yan Jiao Ji ◽  
Jie Wen Huang

Nanostructure surface layer was fabricated on a low carbon steel cylinder specimen by means of circulation rolling plastic deformation (CRPD), and the effect of annealing temperature on microstructure and properties of surface nanocrystalline structure was studied. The microstructure of the surface layer on the samples was observed by transmission electron microscopy and the microhardness variation along the depth was measured on the cross-sectional samples by using microhardness instrument. After CRPD treatment for 250min, the average grain size was about 10nm in the top surface layer and increased with an increment of the distance from the top surface. The surface nanocrystallization samples were annealed at 200°C, 300, 400°C and 500°C for 30min respectively. The nanocrystallization grain of surface layer did not grow for samples after annealed at 200°C and 300°C. After surface nanocrystallization by CRPD treatment the microhadness of top surface obviously increase from 220HV0.1 to 520HV0.1.

2005 ◽  
Vol 475-479 ◽  
pp. 133-136 ◽  
Author(s):  
Xin Min Fan ◽  
Bosen Zhou ◽  
Lin Zhu ◽  
Heng Zhi Wang ◽  
Jie Wen Huang

In this paper, the circulation rolling plastic deformation(CRPD) surface nanocrystallization technology is proposed based on the idea that the severe plastic deformation can induce grain refinement. The equipment of CRPD is designed and manufactured. A nanocrystallization surface layer was successfully obtained in a column sample of low carbon steel. The average grain size in the top surface layer is about 18 nm, and gradually increases with the distance from the surface. The hardness increases gradually from about 200HV0.1 in the matrix to about 600HV0.1 in the surface layer.


2010 ◽  
Vol 97-101 ◽  
pp. 1352-1355
Author(s):  
Xin Min Fan ◽  
Fei Yan Liu ◽  
Jie Wen Huang

A nanostructure surface layer was produced on low carbon steel and commercially pure titanium using high-speed rotating wire-wheel deformation (HRWD). The microstructural features of the surface layer were systematically characterized by cross-sectional optical microcopy observations, transmission electron microscopy, and microhadness measurement was conducted along the depth from top surface layer to matrix of the samples. The results show that nearly equiaxed nanocrystalline layer is formed on the surface of the low carbon steel and pure titanium, in which the average grain size is about 8 nm and 15 nm respectively. The microhardness of the top surface is enhanced obviously compared with that of the coarse-grained matrix.


2020 ◽  
Vol 821 ◽  
pp. 153493 ◽  
Author(s):  
Didik Aryanto ◽  
Alfian Noviyanto ◽  
Toto Sudiro ◽  
Agus Sukarto Wismogroho ◽  
Wahyu Bambang Widayatno ◽  
...  

2001 ◽  
Vol 44 (8-9) ◽  
pp. 1791-1795 ◽  
Author(s):  
G Liu ◽  
S.C Wang ◽  
X.F Lou ◽  
J Lu ◽  
K Lu

2013 ◽  
Vol 27 (11) ◽  
pp. 903-906 ◽  
Author(s):  
V.I. Ivanov ◽  
F.Kh. Burumkulov ◽  
A.D. Verkhoturov ◽  
P.S. Gordiyenko ◽  
Ye.S. Panin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document