The Monitoring and Analysis on the State of Deep Hole Drilling Based on Multi-Sensor Combined Detection Technology

2008 ◽  
Vol 392-394 ◽  
pp. 645-649
Author(s):  
Lin Zhu ◽  
De Ming Xiao

A kind of multi-sensor detection device was designed by using multi-sensor combined detection technology. The signal of axial force, torque and vibration in vertical and horizontal direction in deep hole drilling were collected respectively, and delivered to computer for processing by using data collection device. And then the feature parameters that can reflect the cutting tool wear were abstracted by means of the method of time-domain analysis and frequency-domain analysis. Finally, the state was classified by mode identification method and the judgment samples are also obtained.

2020 ◽  
Author(s):  
Khosro Ghobadi Far ◽  
Shin-Chan Han ◽  
Jeanne Sauber ◽  
Richard Ray ◽  
Christopher M. McCullough ◽  
...  

<p>The test Laser ranging interferometer (LRI) on the GRACE Follow-On satellites provides complementary inter-satellite ranging measurements to the baseline K-band microwave ranging (KBR) system that can be used to examine standard, and create novel, GRACE-FO data products.  We first calculated the KBR and LRI inter-satellite ranging residuals using dynamic orbits computed from non-gravitational accelerations, a static gravity field model and other background geophysical models like ocean tides. To accurately quantify the improvement by LRI, we directly examined the inter-satellite ranging residuals in the time and frequency domains. The frequency-domain analysis reveals that LRI enhances the accuracy of gravity measurements by ~1 order of magnitude over 60-200 CPR (10-37 mHz) frequencies with the signal dominated by static gravity field of the Earth. The time-domain analysis shows that LRI is capable of detecting static gravity signals as small as a few 0.1 nm/s<sup>2</sup> in 100-200 CPR frequency band. We made use of such LRI data acquired in 2019 to validate the state-of-the-art gravity field models GGM05S, GGM05C, GOCE-TIM-R6e, EIGEN-6C4, ITSG-Grace2018s and GOCO06s. We found that LRI data can identify subtle un-/mis-modeled static gravity signals in these models in the spectral as well as spatial domains, and thus, suggest how the next generation of gravity field models could be improved. We also examined the high‐frequency (sub-monthly) variations of the Argentine Gyre using LRI measurements along with satellite altimetry data. Through comparison of measured gravity change by LRI with synthetic gravity change from altimetry sea surface data (evaluated at GRACE Follow-On altitude), we clearly demonstrate how the high-frequency Argentine Gyre signal is fully captured by instantaneous LRI measurements by individual data arcs, but not in the monthly mean Level-2 data. Such along-orbit analyses of LRI data could be employed for, among others, validation of high-frequency non-tidal ocean models used in GRACE and GRACE Follow-On de-aliasing products.</p> <p> </p>


2013 ◽  
Vol 718-720 ◽  
pp. 1165-1169
Author(s):  
Xu Song Xu ◽  
Zhi Ying Sun

For the deep-hole drilling bit works in closed or half-closed condition and the cutting situation can not be observed and controlled directly, it brings a big challenge to monitor the cutting tools and the cutting process. To solve the problem, improved testing methods and data processing techniques were developed. A new condition monitoring method of deep-hole drilling based on multi-sensor data fusion was discussed in the paper. The signals of vibration and cutting force were collected when the condition of deep-hole drilling on stainless steel was normal and abnormal. Four eigenvectors were extracted on time-domain analysis and frequency-domain analysis of the signals. Then the combined four eigenvectors were sent to BP neural networks data fusioning center. The fusioning results indicate that cutting force signal can reflect the condition of drill bit better than vibration signal and multi-sensor data fusion is superior to single-sensor.


2019 ◽  
Vol 88 (6) ◽  
pp. 485-488
Author(s):  
Shinji KAWAI ◽  
Takuya NAGAI ◽  
Shigetaka OKANO

2020 ◽  
Vol 87 (12) ◽  
pp. 757-767
Author(s):  
Robert Wegert ◽  
Vinzenz Guski ◽  
Hans-Christian Möhring ◽  
Siegfried Schmauder

AbstractThe surface quality and the subsurface properties such as hardness, residual stresses and grain size of a drill hole are dependent on the cutting parameters of the single lip deep hole drilling process and therefore on the thermomechanical as-is state in the cutting zone and in the contact zone between the guide pads and the drill hole surface. In this contribution, the main objectives are the in-process measurement of the thermal as-is state in the subsurface of a drilling hole by means of thermocouples as well as the feed force and drilling torque evaluation. FE simulation results to verify the investigations and to predict the thermomechanical conditions in the cutting zone are presented as well. The work is part of an interdisciplinary research project in the framework of the priority program “Surface Conditioning in Machining Processes” (SPP 2086) of the German Research Foundation (DFG).This contribution provides an overview of the effects of cutting parameters, cooling lubrication and including wear on the thermal conditions in the subsurface and mechanical loads during this machining process. At first, a test set up for the in-process temperature measurement will be presented with the execution as well as the analysis of the resulting temperature, feed force and drilling torque during drilling a 42CrMo4 steel. Furthermore, the results of process simulations and the validation of this applied FE approach with measured quantities are presented.


2021 ◽  
Author(s):  
Anis Farhan Kamaruzaman ◽  
Azlan Mohd Zain ◽  
Noordin Mohd Yusof ◽  
Farhad Nadjarian ◽  
Rozita Abdul Jalil

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3606
Author(s):  
Jing-Yuan Lin ◽  
Chuan-Ting Chen ◽  
Kuan-Hung Chen ◽  
Yi-Feng Lin

Three-phase wye–delta LLC topology is suitable for voltage step down and high output current, and has been used in the industry for some time, e.g., for server power and EV charger. However, no comprehensive circuit analysis has been performed for three-phase wye–delta LLC. This paper provides complete analysis methods for three-phase wye–delta LLC. The analysis methods include circuit operation, time domain analysis, frequency domain analysis, and state–plane analysis. Circuit operation helps determine the circuit composition and operation sequence. Time domain analysis helps understand the detail operation, equivalent circuit model, and circuit equation. Frequency domain analysis helps obtain the curve of the transfer function and assists in circuit design. State–plane analysis is used for optimal trajectory control (OTC). These analyses not only can calculate the voltage/current stress, but can also help design three-phase wye-delta connected LLC and provide the OTC control reference. In addition, this paper uses PSIM simulation to verify the correctness of analysis. At the end, a 5-kW three-phase wye–delta LLC prototype is realized. The specification of the prototype is a DC input voltage of 380 V and output voltage/current of 48 V/105 A. The peak efficiency is 96.57%.


Author(s):  
Andreas Baumann ◽  
Ekrem Oezkaya ◽  
Dirk Schnabel ◽  
Dirk Biermann ◽  
Peter Eberhard

Sign in / Sign up

Export Citation Format

Share Document