Abstracts: Environmental Effects; Corrosion Fatigue; Hydrogen Embrittlement; Stress Corrosion Cracking

1990 ◽  
Vol 42-43 ◽  
pp. 285-289
Author(s):  
Gregory T. Quickel ◽  
John A. Beavers

All pipelines contain manufacturing and construction anomalies that typically are stable with time and are not generally considered to be integrity threats. These include laminations, seam weld anomalies, girth weld anomalies, and shallow dents. There also are time-dependent integrity threats to buried natural gas and petroleum pipelines. These include external and internal corrosion, fatigue, corrosion fatigue, stress corrosion cracking (SCC), and hydrogen embrittlement. Unexpected failures can occur when the time dependent integrity threats are coupled with these stable anomalies. This paper describes several of these interactions.


MRS Bulletin ◽  
1989 ◽  
Vol 14 (8) ◽  
pp. 37-43 ◽  
Author(s):  
David B. Kasul ◽  
Lloyd A. Heldt

A material's susceptibility to cracking may be significantly affected by its chemical environment. Stress corrosion cracking (SCC), liquid metal embrittle-ment (LME), hydrogen embrittlement (HE), and corrosion fatigue are examples of environmental effects which cause ductility or endurance losses through environment-assisted cracking (EAC). Under certain conditions, virtually all commercially important materials are susceptible to one or more of the above embrittlement processes. Cracking may occur intergranularly, transgranularly, or in a mixed mode, depending on conditions. Much is known about the metallurgical and environmental conditions which promote environment-assisted cracking, and prudent control of these is often successful in mitigating or preventing cracking. However, in spite of our understanding of the factors controlling SCC, LME, and HE, the responsible mechanisms remain elusive.This article will (1) review some of the important variables affecting these phenomena, such as stress, stress intensity, material microstructure, strain rate, electrochemical potential and pH, and (2) attempt to relate phenomeno-logical characteristics of environment-induced embrittlement to several mechanisms proposed for environment-assisted cracking, as they are understood today.The problem of stress corrosion cracking is unquestionably the most costly of environmental cracking phenomena, with losses occurring in a wide variety of service environments. Liquid metal embrittlement is of concern in nuclear power and other industries. Hydrogen embrittlement, first recognized as an embrittler of iron in 1873, causes cracking problems in applications ranging from welding to oil drilling. In all, the list of situations in which environment-assisted cracking occurs is long and is likely to grow as materials are increasingly challenged by the severity of their service conditions.


Author(s):  
Zhigang Wei ◽  
Limin Luo ◽  
Marek Rybarz ◽  
Kamran Nikbin

Corrosion-fatigue and stress corrosion cracking have long been recognized as the principal degradation and failure mechanisms of materials under combined corrosive environment and sustained/cyclic loading conditions. These phenomena are strongly material and environment dependent, and cycle-dependent fatigue and time-dependent matter diffusion/chemical reaction at the crack tip can be operational simultaneously. How to include these cycle-dependent and time-dependent phenomena in a single model and how to study the failure mechanisms interaction are big challenges posed to material scientists and engineers. In this paper the current linear superposition theories for modeling cycle-dependent and time-dependent corrosion-fatigue and stress corrosion cracking phenomena are reviewed first. Subsequently, a generalized nonlinear superposition theory is proposed to incorporate possible nonlinear interaction or synergistic effect among the underlying mechanisms. The unified model derived from the new theory, depending on the specific materials and loading condition and environment, can be reduced to pure corrosion, pure fatigue, stress corrosion cracking and corrosion-fatigue. Finally, for the first time, a new breakthrough parameter is defined in this paper to quantitatively describe the interaction or synergistic effect between two different operating mechanisms, such as time- and cycle-dependent mechanisms.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6115
Author(s):  
Marina Cabrini ◽  
Sergio Lorenzi ◽  
Cristian Testa ◽  
Francesco Carugo ◽  
Tommaso Pastore ◽  
...  

Laser bed powder fusion (LPBF) is an additive manufacturing technology for the fabrication of semi-finished components directly from computer-aided design modelling, through melting and consolidation, layer upon layer, of a metallic powder, with a laser source. This manufacturing technique is particularly indicated for poor machinable alloys, such as Alloy 625. However, the unique microstructure generated could modify the resistance of the alloy to environment assisted cracking. The aim of this work was to analyze the stress corrosion cracking (SCC) and hydrogen embrittlement resistance behavior of Alloy 625 obtained by LPBF, both in as-built condition and after a standard heat treatment (grade 1). U-bend testing performed in boiling magnesium chloride at 155 and 170 °C confirmed the immunity of the alloy to SCC. However, slow strain rate tests in simulated ocean water on cathodically polarized specimens highlighted the possibility of the occurrence of hydrogen embrittlement in a specific range of strain rate and cathodic polarization. The very fine grain size and dislocation density of the thermally untreated specimens appeared to increase the hydrogen diffusion and embrittlement effect on pre-charged specimens that were deformed at the high strain rate. Conversely, heat treatment appeared to mitigate hydrogen embrittlement at high strain rates, however at the slow strain rate all the specimens showed a similar behavior.


Sign in / Sign up

Export Citation Format

Share Document