Thermal Stress and Thermal Cycling Analyses of Microgyroscope Chip Models

2011 ◽  
Vol 462-463 ◽  
pp. 622-627 ◽  
Author(s):  
Meng Kao Yeh ◽  
Chun Lin Lu

The thermal stress and thermal fatigue life for three different microgyroscope chip models were investigated in this paper. The deformation and stress distribution in chip, at interface between microgyroscope and chip, and in the spring of microgyroscope were obtained for three different microgyroscope chip models by the finite element method. The results show that for the simplified model, no obvious differences from linear or nonlinear analyses are obtained and the fatigue life of microgyroscope chip can be predicted with the properly simplified model. Also, the model having the same process in fabricating microgyroscope and carrier has better reliability. This paper provides an effective method for the reliability analysis of microgyroscope chip.

2001 ◽  
Vol 42 (5) ◽  
pp. 809-813 ◽  
Author(s):  
Young-Eui Shin ◽  
Kyung-Woo Lee ◽  
Kyong-Ho Chang ◽  
Seung-Boo Jung ◽  
Jae Pil Jung

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5536
Author(s):  
David Curto-Cárdenas ◽  
Jose Calaf-Chica ◽  
Pedro Miguel Bravo Díez ◽  
Mónica Preciado Calzada ◽  
Maria-Jose Garcia-Tarrago

Cold expansion technology is an extended method used in aeronautics to increase fatigue life of holes and hence extending inspection intervals. During the cold expansion process, a mechanical mandrel is forced to pass along the hole generating compressive residual hoop stresses. The most widely accepted geometry for this mandrel is the tapered one and simpler options like balls have generally been rejected based on the non-conforming residual hoop stresses derived from their use. In this investigation a novelty process using multiple balls with incremental interference, instead of a single one, was simulated. Experimental tests were performed to validate the finite element method (FEM) models and residual hoop stresses from multiple balls simulation were compared with one ball and tapered mandrel simulations. Results showed that the use of three incremental balls significantly reduced the magnitude of non-conforming residual hoop stresses and the extension of these detrimental zone.


2017 ◽  
Vol 754 ◽  
pp. 206-209 ◽  
Author(s):  
Lucie Malíková ◽  
Stanislav Seitl

A simplified model of a crack approaching a bi-material interface is modelled by means of the finite element method in order to investigate the significance of the higher-order terms of the Williams expansion for the proper approximation of the opening crack-tip stress near the bi-material interface. The discussion on results is presented and the importance of the higher-order terms proved.


2002 ◽  
Vol 124 (4) ◽  
pp. 403-410 ◽  
Author(s):  
J. Lau ◽  
Z. Mei ◽  
S. Pang ◽  
C. Amsden ◽  
J. Rayner ◽  
...  

Thermal reliability of the solder sealing ring of Agilent Technologies’ bubble-actuated photonic cross-connect switches has been investigated in this paper. Emphasis is placed on the determination of the thermal-fatigue life of the solder sealing ring under shipping/storing/handling conditions. The solder ring is assumed to obey the Garofalo-Arrhenius creep constitutive law. The nonlinear responses such as the deflections, stresses, creep strains, and creep strain energy density of the 3-D photonic package have been determined with a commercial finite element code. In addition, isothermal fatigue tests have been performed to obtain the relationship between the number of cycle-to-failure and the strain energy density. Thus, by combining the finite element results and the isothermal fatigue test results, the average thermal-fatigue life of the solder sealing ring is readily determined and is found to be more than adequate for shipping/storing/handling the photonic switches.


Sign in / Sign up

Export Citation Format

Share Document