Effect of Temperature on the Cyclic Stress Components of Gamma - TiAl Based Alloy with Niobium Alloying

2011 ◽  
Vol 465 ◽  
pp. 447-450 ◽  
Author(s):  
Martin Petrenec ◽  
Petr Buček ◽  
Tomáš Kruml ◽  
Jaroslav Polák

Cyclic strain controlled multiple step tests have been performed on cylindrical specimens of cast -TiAl based alloy with 2 at.% of Nb with nearly lamellar microstructure at 23 and 750 °C in laboratory atmosphere with the aim to study the effect of temperature on the internal and effective cyclic stress components. At these temperatures, the evolution of the effective and internal stress components and the effective elastic moduli were derived from the hysteresis loops analyzed according to the statistical theory of hysteresis loop. Cyclic hardening/softening curves and cyclic stress-strain curves were obtained at both temperatures. Cyclic stress–strain curves measured using short-cut procedure coincide with the basic cyclic stress-strain curve. They are shifted to lower stresses with increasing temperature. Cyclic stress-strain response at both temperatures was compared and discussed in relation to changes of internal and effective stress components and dislocation modes referred in literature concerning this class of the material.

1993 ◽  
Vol 28 (2) ◽  
pp. 125-133 ◽  
Author(s):  
A Navarro ◽  
M W Brown ◽  
K J Miller

A simplified treatment is presented for the analysis of tubular specimens subject to in-phase tension-torsion loads in the elasto-plastic regime. Use is made of a hardening function readily obtainable from the uniaxial cyclic stress-strain curve and hysteresis loops. Expressions are given for incremental as well as deformation theories of plasticity. The reversals of loading are modelled by referring the flow equations to the point of reversal and calculating distances from the point of reversal using a yield critertion. The method has been used to predict the deformation response of in-phase tests on an En15R steel, and comparisons with experimental data are provided. The material exhibited a non-Masing type behaviour. A power law rule is developed for predicting multiaxial cyclic response from uniaxial data by incorporating a hysteretic strain hardening exponent.


2011 ◽  
Vol 278 ◽  
pp. 393-398 ◽  
Author(s):  
Miroslav Šmíd ◽  
Martin Petrenec ◽  
Jaroslav Polák ◽  
Karel Obrtlík ◽  
Alice Chlupová

Cyclic multiple step test in strain control have been performed on cylindrical specimens of cast polycrystalline Inconel 738LC and 792-5A superalloys at 800 °C in laboratory atmosphere. Hysteresis loops were analyzed according to the statistical theory of hysteresis loop. The effective and internal stress components were evaluated. The effective stress of γ´ precipitate has significant influence on the stress-strain response both materials. The stress amplitude in IN 792-5A is higher than in IN 738LC at approximately same total strain amplitude due to significantly higher effective stress of γ´ phase. Cyclic hardening/softening curves and cyclic stress-strain curves using short-cut procedure were obtained. Cyclic hardening/softening behavior depends both on temperature and strain amplitude. Low amplitude straining is characterized by the saturation of the stress amplitude. In high amplitude straining slight softening was found. The cyclic stress-strain curves for both materials can be fitted by power law. Cyclic stress-strain response in terms of internal and effective stress components is discussed in relation to microstructural parameters of the materials. The observation of surface relief revealed the presence of persistent slip markings.


1984 ◽  
Vol 106 (4) ◽  
pp. 336-341
Author(s):  
R. Winter

An experimental and theoretical study was performed of the nonlinear behavior of a simply supported flat circular aluminum plate under reversed cyclic central load. The application is for the analysis of cyclic stress and strain of structural components in the plastic range for predicting low-cycle fatigue life. The main purpose was to determine the relative accuracy of an elastic-plastic large deformation finite element analysis when the material properties input data are derived from monotonic (noncyclic) stress-strain curves versus that derived from cyclic stress-strain curves. The results showed that large errors could be induced in the theoretical prediction of cyclic strain range when using the monotonic stress-strain curve, which could lead to large errors in predicting low-cycle fatigue life. The use of cyclic stress-strain curves, according to the model developed by Morrow, et al., proved to be accurate and convenient.


2008 ◽  
Vol 385-387 ◽  
pp. 581-584 ◽  
Author(s):  
Karel Obrtlík ◽  
Alice Chlupová ◽  
Martin Petrenec ◽  
Jaroslav Polák

Cylindrical specimens of cast polycrystalline nickel base superalloy Inconel 738LC were cyclically strained under total strain control at 23 and 800 °C to fracture. Cyclic hardening/softening curves, cyclic stress-strain curves, and fatigue life curves were obtained at both temperatures. Surface relief was studied in specimens fatigued to failure using scanning electron microscopy. Cyclic hardening/softening behaviour depends both on temperature and strain amplitude. Low amplitude straining was characterized by saturation of the stress amplitude. In high amplitude straining a pronounced hardening was found which was followed by saturation at room temperature and by cyclic softening at 800 °C. The cyclic stress-strain curves can be fitted by power law. They are shifted to lower stresses with increasing temperature. Fatigue life curves can be approximated by the Manson- Coffin and Basquin laws. The Manson-Coffin and Basquin curves are shifted to lower lives with increasing temperature. Slip markings were detected on specimen surface at all test temperatures. When temperature grows the density of slip markings is reduced.


1994 ◽  
Vol 29 (2) ◽  
pp. 105-116
Author(s):  
V O A Oloyede ◽  
C E Turner

This paper presents a generalized concept of combined hardening which is examined by experimental and computational methods. A ‘kinematic displacement parameter’, β, relating the movement of the yield function surface to the Bauschinger effect, is defined in terms of its dependence on material properties and loading state. Experimental relations between β and the plastic strain, εp, are prsented for three metals. The monotonic stress-strain and β data are used in a finite element program to show that settled cyclic hysteresis loops are soon established. Settled cyclic stress-strain curves computed in this way are in good agreement with the experimental results for an aluminium alloy, a stainless steel that shows cyclic hardening, and a titanium alloy that shows little cyclic effect.


2010 ◽  
Vol 146-147 ◽  
pp. 1379-1385
Author(s):  
Yang Gao ◽  
Chang Jun Yang ◽  
Kai Lin ◽  
Qing Gao

Cyclic stress-strain curve and cyclic strain-life curve appear distinct scatters, and the scatter of fatigue life increases with reducing of the strain levels. A methodology for reliability simulation of low cycle fatigue (LCF) life for turbine disk structures is developed in this paper. First, probabilistic cyclic stress-strain model and linear heteroscedastic probabilistic cyclic strain-life model are founded based on the fatigue test data. Second, three dimensional model of a turbine disk is built, and the fatigue reliability analysis of this turbine disk is implemented in probabilistic design module (PDS) of ANSYS by the combination of response surface method (RSM) and Monte Carlo simulation (MCS). The predicted life with reliability 0.9987 is well consistent with the technology life obtained from disks LCF tests by scatter factors method.


2008 ◽  
Vol 378-379 ◽  
pp. 17-28 ◽  
Author(s):  
I. Alvarez-Armas ◽  
Suzanne Degallaix

The cyclic hardening–softening response, the cyclic stress–strain curve and the substructure evolution of a high nitrogen duplex stainless steel S32750 have been evaluated and the results compared with reference to low and medium nitrogen duplex stainless steels, S32205 and S32900 grades, respectively. The beneficial effects of nitrogen on the cyclic properties of most modern alloys have been analyzed in terms of the flow stress components, i.e. the internal and the effective stress.


2011 ◽  
Vol 399-401 ◽  
pp. 1937-1941 ◽  
Author(s):  
Wen Yong Xu ◽  
Guo Qing Zhang ◽  
Zhou Li

Low cycle fatigue behavior of spray formed superalloy GH738 at 650°C has been investigated under fully reversed total strain-controlled mode. When strain amplitude (Δεt/2) is between 0.32% and 0.4%, cyclic stress response is stable under fully reversed constant total strain amplitude. The stabilized hysteresis loops narrowing sharply to a straight line indicates that the alloy exhibits typical elastic strain. The crack initiates single site from the surface. When strain amplitude is between 0.6% and 1.0%, cyclic hardening is observed until fracture. The tendency for hardening is found to increase with strain amplitude. The hyperesis loops expand gradually, which indicates that plastic deformation happens during cyclic deformation process. The crack initiates multi-sites from the surface. The cyclic strain-stress relationship of spray formed GH738 at 650°C can be illustrated by Δσ/2 =2017(Δεp/2)0.1489.The total strain-life function can expressed by Δεt/2=0.0071(2Nf)-0.0781+0.0647(2Nf) )-0.4914.


Author(s):  
K. J. Thompson ◽  
R. Park

The stress-strain relationship of Grade 275 steel reinforcing bar under cyclic (reversed) loading is examined using experimental results obtained previously from eleven test specimens to which a variety of axial loading cycles has been applied. A Ramberg-Osgood function is fitted to the experimental stress-strain curves to follow the cyclic stress-strain behaviour after the first load run in the plastic range. The empirical constants in the function are determined by regression analysis and are found to depend mainly on the plastic strain imposed
in the previous loading run. The monotonic stress-strain curve for the steel, with origin of strains suitably adjusted, is assumed to be the envelope curve giving the upper limit of stress. The resulting Ramberg-Osgood expression and envelope is found to give good agreement with the experimentally measured cyclic stress-strain curves.


Sign in / Sign up

Export Citation Format

Share Document