Experimental and Numerical Investigation of the Mixed-Mode Delamination of PAN Based Carbon/Epoxy Composite Using Modified Arcan Fixture

2011 ◽  
Vol 471-472 ◽  
pp. 880-885 ◽  
Author(s):  
M. Ziaee ◽  
Naghdali Choupani

The present research examines analytically and experimentally the mode-I and mode-II and mixed mode-Interlaminar fracture toughness of PAN based carbon/epoxy composite. A modified Arcan fixture, well-suited for the study of the behavior of used composite assemblies, was developed in order to focus on the analysis of the fracture behavior of the material. The edge effects are minimized by using an appropriate design of the substrates so that experimental results give reliable data. Also the mode-I and mode-II stress intensity factors were computed for different crack lengths and load orientation angles using finite element analysis. The numerical results show that the modified Arcan specimen is able to provide pure mode-I, pure mode-II and any mixed mode loading conditions. It is shown that the results obtained from the fracture tests are consistent very well with mixed mode fracture theories. Obtained results indicated that fracture toughness and stress intensity factor for sliding mode enhanced up when the loading angle increased. Mechanism of fracture and toughening were examined by using scanning electron microscopy.

2016 ◽  
Vol 18 ◽  
pp. 52-57
Author(s):  
Lahouari Fodil ◽  
Abdallah El Azzizi ◽  
Mohammed Hadj Meliani

A failure criterion is proposed for ductile fracture in U-notched components under mixed mode static loading. The Compact Tension Shear (CTS) is the preferred test specimen used to determine stress intensity factor in the mode I, mode II and the mixed-mode fracture. In this work, the mode I and mode II stress intensity factors were computed for different notch ratio lengths 0.1<a/W<0.7, of the inner radius of notch 0.25mm<ρ<4mm and load orientation angles 0°<α< 90° using finite element analysis. However, a review of numerical analysis results reveals that the conventional fracture criteria with only stress intensity factors (NSIFs) Kρ first term of Williams’s solution provide different description of stress field around notch zone comparing with results introduce the second and third parameter T-stress and A3.


2011 ◽  
Vol 471-472 ◽  
pp. 886-891
Author(s):  
Mohammad Hossein Heydari ◽  
Naghdali Choupani

The aim of this paper is to evaluate interlaminar fracture toughness and non dimensional stress intensity factors of woven Carbon-Polyester composite based on numerical and experimental methods. A modified version of Arcan specimen was employed to conduct a mixed-mode fracture test using a special loading device. By changing the loading angle, α, from 0° to 90°, mode-I, mode-II and all mixed-mode data were created. The finite element analysis was performed with Abaqus software. The interaction j-integral was used to separate the mixed mode stress intensity factors and energy release rate at the crack tip under different loading conditions and different thickness of specimens. The results of fracture toughness tests revealed that the interlaminar fracture of composite is strong under the shearing-mode loading but weaker to the opening- mode loading. It can be seen that by increasing the thickness of the composite specimen, non dimensional stress intensity factors for pure mode I (α=0°) and pure mode II (α=90° ) loading conditions were decreased.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2103
Author(s):  
Christophe Floreani ◽  
Colin Robert ◽  
Parvez Alam ◽  
Peter Davies ◽  
Conchúr M. Ó. Brádaigh

Powder epoxy composites have several advantages for the processing of large composite structures, including low exotherm, viscosity and material cost, as well as the ability to carry out separate melting and curing operations. This work studies the mode I and mixed-mode toughness, as well as the in-plane mechanical properties of unidirectional stitched glass and carbon fibre reinforced powder epoxy composites. The interlaminar fracture toughness is studied in pure mode I by performing Double Cantilever Beam tests and at 25% mode II, 50% mode II and 75% mode II by performing Mixed Mode Bending testing according to the ASTM D5528-13 test standard. The tensile and compressive properties are comparable to that of standard epoxy composites but both the mode I and mixed-mode toughness are shown to be significantly higher than that of other epoxy composites, even when comparing to toughened epoxies. The mixed-mode critical strain energy release rate as a function of the delamination mode ratio is also provided. This paper highlights the potential for powder epoxy composites in the manufacturing of structures where there is a risk of delamination.


1989 ◽  
Vol 111 (1) ◽  
pp. 174-180 ◽  
Author(s):  
D. Singh ◽  
D. K. Shetty

Fracture toughness of polycrystalline alumina and ceria partially stabilized tetragonal zirconia (CeO2-TZP) ceramics were assessed in combined mode I and mode II loading using precracked disk specimens in diametral compression. Stress states ranging from pure mode I, combined mode I and mode II, and pure mode II were obtained by aligning the center crack at specific angles relative to the loading diameter. The resulting mixed-mode fracture toughness envelope showed significant deviation to higher fracture toughness in mode II relative to the predictions of the linear elastic fracture mechanics theory. Critical comparison with corresponding results on soda-lime glass and fracture surface observations showed that crack surface resistance arising from grain interlocking and abrasion were the main sources of the increased fracture toughness in mode II loading of the polycrystalline ceramics. The normalized fracture toughness for pure mode II loading, (KII/KIc), increased with increasing grain size for the CeO2-TZP ceramics. Quantitative fractography confirmed an increased percentage of transgranular fracture of the grains in mode II loading.


2016 ◽  
Vol 08 (02) ◽  
pp. 1650015 ◽  
Author(s):  
Moharram Shameli ◽  
Naghdali Choupani

In this study, experimental and numerical investigation of the interlaminar fracture behavior of woven glass-epoxy composite was performed under static mixed-mode loading conditions. A new modified mixed-mode loading fixture was employed for this purpose. Woven glass-epoxy composite sheet was produced by hand lay-up method and post-cured in an autoclave set. Butterfly samples were prepared by saw water machine. Mixed-mode fracture tests from pure mode-I to pure mode-II were performed. A finite element analysis was performed and nondimensional stress intensity factors of butterfly samples were computed and a polynomial fit was proposed to evaluate the stress intensity factors of an interlaminar crack subjected to various mixed-mode loadings using new designed fixture. The results indicated that the composite material used in this study is tougher in shear loading conditions and weaker in tensile loadings. For studied composite material, the interlaminar mixed-mode fracture data were according to the strain energy release rates by power-law criterion with the exponents [Formula: see text], [Formula: see text]


2013 ◽  
Vol 577-578 ◽  
pp. 117-120 ◽  
Author(s):  
Radu Negru ◽  
Liviu Marşavina ◽  
Hannelore Filipescu

Using the asymmetric semi-circular bend specimen (ASCB) a set of mixed-mode fracture tests were carried out in the full range from pure mode I to pure mode II. The tests were conducted on two polyurethane materials characterized by different properties. The fracture parameters were obtained from experiments and are compared with the predictions based on the generalized MTS criterion (GMTS). The agreement between the experimental results and those predicted based on the GMTS criterion is discussed finally.


2021 ◽  
Vol 11 (4) ◽  
pp. 1652
Author(s):  
Xin Pan ◽  
Jiuzhou Huang ◽  
Zhiqiang Gan ◽  
Shiming Dong ◽  
Wen Hua

The crack-propagation form may appear as an arbitrary mixed-mode fracture in an engineering structure due to an irregular internal crack. It is of great significance to research the mixed-mode fracture of materials with cracks. The coupling effect of multiple variables (crack height ratio, horizontal deflection angle and vertical deflection angle) on fracture parameters such as the stress intensity factors and the T-stress are the key points in this paper. A three-point bending specimen with an inclined crack was proposed and used to conduct mixed-mode fracture research. The fracture parameters were obtained by finite element analysis, and the computed results showed that the pure mode I fracture and mixed-mode fractures (mode I/II, mode I/III and mode I/II/III) can be realized by changing the deflection angles of the crack. The pure mode I and the mixed-mode fracture toughness of sandstone were obtained by a series of mixed-mode fracture experiments. The experimental results were analyzed with the generalized maximum tangential strain energy density factor criterion considering T-stress. The results showed that the non-singular term T-stress in the fracture parameters cannot be ignored in any mixed-mode fracture research, and the generalized maximum tangential strain energy density factor criterion considering T-stress can better predict the mixed-mode fracture toughness than other criteria.


1997 ◽  
Vol 119 (1) ◽  
pp. 7-14
Author(s):  
T. Ono ◽  
M. Kaji

Mixed-mode fracture of structural ceramics under a biaxial stress state was investigated by an anticlastic bending test using the controlled surface flaw technique. The stress state of the anticlastic bending specimen is biaxial. This test enables the study of fractures under pure mode I, pure mode II, or any combination of mode I and mode II loading. To discuss the experimental results, a parameter “T” was introduced to the modified maximum hoop stress criterion. This parameter represents frictional effects of crack interfaces on the mixed-mode fracture and can be obtained experimentally. Relative magnitudes of mode I and mode II stress intensity factors and the directions of non-coplanar crack extension angles were predicted using the parameter “T.” Reasonable agreement with the experimental results was obtained.


2020 ◽  
Vol 4 (2) ◽  
pp. 66 ◽  
Author(s):  
Yousef Saadati ◽  
Jean-Francois Chatelain ◽  
Gilbert Lebrun ◽  
Yves Beauchamp ◽  
Philippe Bocher ◽  
...  

Having environmental and economic advantages, flax fibers have been recognized as a potential replacement for glass fibers as reinforcement in epoxy composites for various applications. Its widening applications require employing failure criteria and analysis methods for engineering design, analysis, and optimization of this material. Among different failure modes, delamination is known as one of the earliest ones in laminated composites and needs to be studied in detail. However, the delamination characteristics of unidirectional (UD) flax/epoxy composites in pure Mode I has rarely been addressed, while Mode II and Mixed-mode I/II have never been addressed before. This work studies and evaluates the interlaminar fracture toughness and delamination behavior of UD flax/epoxy composite under Mode I, Mode II, and Mixed-mode I/II loading. The composites were tested following corresponding ASTM standards and fulfilled all the requirements. The interlaminar fracture toughness of the composite were determined and validated based on the specific characteristics of natural fibers. Considering the variation in the composite structure configuration and its effects, the results of interlaminar fracture toughness fit in the range of those reported for similar composites in the literature and provide a basis for the material properties of this composite.


Sign in / Sign up

Export Citation Format

Share Document