An Object-Oriented Shadow Detection Approach of Remote Sensing Image

2011 ◽  
Vol 474-476 ◽  
pp. 1038-1043 ◽  
Author(s):  
Xiao Le Shen ◽  
Zhen Feng Shao ◽  
Hui Luo ◽  
Wei Cheng

Shadows widely exist in high-resolution remote sensing images and affect image interpretation in certain degree. Improving the accuracy and efficiency of shadow region detection is always a significant problem in remote sensing image processing field. In this paper, an object-oriented shadow detection approach of remote sensing image is proposed on the basis of analyzing the characteristics of the shadow object. Experimental results indicate the efficiency and validity of our object-oriented approach for shadow detection compared with conventional pixel-level methods.

2013 ◽  
Vol 333-335 ◽  
pp. 1475-1478
Author(s):  
Zhi Hong Liu ◽  
Xing Ke Yang ◽  
Qian Zhu ◽  
Hu Jun He ◽  
San You Cheng

Analyzing the significance of macroscopically dynamic monitoring of newly increased construction land, and considering the influence of various factors, this paper selects central Shaanxi Plain in Northwestern region for a typical experimental zone, setting up knowledge base of remote sensing images interpretation, using multi-temporal remote sensing images, carrying through interactive interpretation of change patterns spots of newly increased construction land and field validation. Results of middle resolution remote sensing image interpretation are compared, analyzed. Additionally, interpretation accuracy of different scales are studied, especially between middle resolution 10 ms ALOS remote sensing image and panchromatic high resolution remote sensing, on newly increased construction land in northwestern plains, to find out the remote sensing images which can not only quickly extract new construction land change patterns spots, but also can satisfy precision requirement of the business.


2021 ◽  
Vol 2021 ◽  
pp. 1-20
Author(s):  
Jiaming Xue ◽  
Shun Xiong ◽  
Chaoguang Men ◽  
Zhiming Liu ◽  
Yongmei Liu

Remote-sensing images play a crucial role in a wide range of applications and have been receiving significant attention. In recent years, great efforts have been made in developing various methods for intelligent interpretation of remote-sensing images. Generally speaking, machine learning-based methods of remote-sensing image interpretation require a large number of labeled samples and there are still not enough annotated datasets in the field of remote sensing. However, manual annotation of remote-sensing images is usually labor-intensive and requires expert knowledge and the accuracy of annotation results is relatively low. The goal of this paper is to propose a novel tile-level annotation method of remote-sensing images to obtain remote-sensing datasets which are well-labeled and contain accurate semantic concepts. Firstly, we use a set of images with defined semantic concepts to represent the training set and divide them into several nonoverlapping regions. Secondly, the color features, texture features, and spatial features of each region are extracted, and discriminative features are obtained by the weight optimization feature fusion method. Then, the features are quantized into visual words by applying a density-based clustering center selection method and an isolated feature point elimination method. And the remote-sensing images can be represented by a series of visual words. Finally, the LDA model is used to calculate the probabilities of semantic categories for each region. The experiments are conducted on remote-sensing images which demonstrate that our proposed method can achieve good performance on remote-sensing image tile-level annotation. The implications of our research can obtain annotated datasets with accurate semantic concepts for intelligent interpretation of remote-sensing images.


Author(s):  
Cunguang Zhang ◽  
Hongxun Jiang ◽  
Riwei Pan ◽  
Haiheng Cao ◽  
Mingliang Zhou

Sea-land segmentation based on edge detection is commonly utilized in ship detection, coastline extraction, and satellite system applications due to its high accuracy and rapid speed. Pixel-level distribution statistics do not currently satisfy the requirements for high-resolution, large-scale remote sensing image processing. To address the above problem, in this paper, we propose a high-throughput hardware architecture for sea-land segmentation based on multi-dimensional parallel characteristics. The proposed architecture is well suited to wide remote sensing images. Efficient multi-dimensional block level statistics allow for relatively infrequent pixel-level memory access; a boundary block tracking process replaces the whole-image scanning process, markedly enhancing efficiency. The tracking efficiency is further improved by a convenient two-step scanning strategy that feeds back the path state in a timely manner for a large number of blocks in the same direction appearing in the algorithm. The proposed architecture was deployed on Xilinx Virtex k7-410t to find that its practical processing time for a [Formula: see text] remote sensing image is only about 0.4[Formula: see text]s. The peak performance is 1.625[Formula: see text]gbps, which is higher than other FPGA implementations of segmentation algorithms. The proposed structure is highly competitive in processing wide remote sensing images.


Author(s):  
Xin Yu ◽  
Zongyong Wen ◽  
Zhaorong Zhu ◽  
Qiang Xia ◽  
Lan Shun

Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.


Author(s):  
G. Zhou ◽  
J. Sha ◽  
T. Yue ◽  
Q. Wang ◽  
X. Liu ◽  
...  

Shadow is one of the basic features of remote sensing image, it expresses a lot of information of the object which is loss or interference, and the removal of shadow is always a difficult problem to remote sensing image processing. In this paper, it is mainly analyzes the characteristics and properties of shadows from the ghost image (traditional orthorectification). The DBM and the interior and exterior orientation elements of the image are used to calculate the zenith angle of sun. Then this paper combines the scope of the architectural shadows which has be determined by the zenith angle of sun with the region growing method to make the detection of architectural shadow areas. This method lays a solid foundation for the shadow of the repair from the ghost image later. It will greatly improve the accuracy of shadow detection from buildings and make it more conducive to solve the problem of urban large-scale aerial imagines.


2018 ◽  
Vol 14 (09) ◽  
pp. 208
Author(s):  
Hongling Xiu ◽  
Fengyun Yang

In the process of remote sensing image processing, analysis and interpretation, it is usually necessary to combine several local images into a complete image. Aiming at the shortcoming of long and complicated process of conventional semi-automatic video stitching. In this paper, using the splicing method of pixels, based on the Python interface of ArcGIS 10.1 platform, the idea of programming language is introduced and batch mosaic of remote sensing images is realized. Through the comparison with the image processing software, it is found that this method can shorten the time of image mosaic and improve the efficiency of splicing, which is convenient for later image analysis and other work under the premise of ensuring the accuracy.


Author(s):  
L. Liang ◽  
G. Ying ◽  
X. Wen ◽  
Y. Zhang

In this paper a novel object-oriented change detection approach in multitemporal remote-sensing images is proposed. In order to improve post classification comparison (PCC) performance, we propose to exploit spatiotemporal relationship between two images acquired at two different times. The probabilities of class transitions are used to describe the temporal dependence information, while the Markov Random Field (MRF) model is utilized to represent the spatial-contextual information. Training sets are required to get initial classification results b maximum likelihood method (ML). Then an estimation procedure: iterated conditional mode (ICM) is present to revise the classification results. Change detection (change/no change) and change type recognitions (from-to types of change) are achieved by compare classification maps acquired at two different times. Experimental results on two QuickBird images confirm that the proposee method can provide higher accuracy than the PCC method, which ignores spatiotemporal relationship between two images.


Author(s):  
Xin Yu ◽  
Zongyong Wen ◽  
Zhaorong Zhu ◽  
Qiang Xia ◽  
Lan Shun

Image classification will still be a long way in the future, although it has gone almost half a century. In fact, researchers have gained many fruits in the image classification domain, but there is still a long distance between theory and practice. However, some new methods in the artificial intelligence domain will be absorbed into the image classification domain and draw on the strength of each to offset the weakness of the other, which will open up a new prospect. Usually, networks play the role of a high-level language, as is seen in Artificial Intelligence and statistics, because networks are used to build complex model from simple components. These years, Bayesian Networks, one of probabilistic networks, are a powerful data mining technique for handling uncertainty in complex domains. In this paper, we apply Tree Augmented Naive Bayesian Networks (TAN) to texture classification of High-resolution remote sensing images and put up a new method to construct the network topology structure in terms of training accuracy based on the training samples. Since 2013, China government has started the first national geographical information census project, which mainly interprets geographical information based on high-resolution remote sensing images. Therefore, this paper tries to apply Bayesian network to remote sensing image classification, in order to improve image interpretation in the first national geographical information census project. In the experiment, we choose some remote sensing images in Beijing. Experimental results demonstrate TAN outperform than Naive Bayesian Classifier (NBC) and Maximum Likelihood Classification Method (MLC) in the overall classification accuracy. In addition, the proposed method can reduce the workload of field workers and improve the work efficiency. Although it is time consuming, it will be an attractive and effective method for assisting office operation of image interpretation.


Author(s):  
R. G. Xu ◽  
G. Qiao ◽  
Y. J. Wu ◽  
Y. J. Cao

<p><strong>Abstract.</strong> Tibetan Plateau (TP) is the most abundant area of water resources and water energy resources in China. It is also the birthplace of the main rivers in Southeast Asia and plays an important strategic role. However, due to its remote location and complex topography, the observation of surface hydrometeorological elements is extremely scarce, which seriously restricts the understanding of the water cycle in this area. Using remote sensing images to extract rivers and lakes on TP can obtain a lot of valuable water resources information. However, the downloading and processing of remote sensing images is very time-consuming, especially the processing of remote sensing images with large-scale and long time series often involves hundreds of gigabytes of data, which requires a high level of personal computers and is inefficient. As a cloud platform dedicated to data processing and analysis of geoscience, Google Earth Engine(GEE) integrates many excellent remote sensing image processing algorithms. It does not need to download images and supports online remote sensing image processing, which greatly improves the output efficiency. Based on GEE, the monthly data of Yarlung Zangbo River at Nuxia Hydrological Station and the annual data of typical lakes were extracted and vectorized from the pre-processed Landsat series images. It was found that the area of Yarlung Zangbo River at Nuxia Hydrological Station varies periodically. The changing trend of typical lakes is also revealed.</p>


Sign in / Sign up

Export Citation Format

Share Document