hydrological station
Recently Published Documents


TOTAL DOCUMENTS

56
(FIVE YEARS 20)

H-INDEX

5
(FIVE YEARS 0)

2021 ◽  
Vol 9 (11) ◽  
pp. 1291
Author(s):  
Chengcheng Hou ◽  
Jianrong Zhu ◽  
Ju Huang ◽  
Xinyue Cheng

Estuaries are areas where runoff and tide interact. Tidal waves propagate upstream from river mouths and produce tidal currents and tidal level variations along rivers. Based on the hydrological frequency analysis of river discharge in the dry season and flood season at the Datong hydrological station over the past 70 years, a three-dimensional estuary numerical model was used to produce the quantitative relationships between the tidal current limit, tidal level limit and river discharge in the Changjiang River estuary. The positions of tidal current limit and tidal level limit depend not only on river discharge but also on river topography. When river discharge varies from a hydrological frequency of 95% to 5%, the relationship between the tidal current limit and river discharge is y=2×10−13x3+3 × 10−8x2− 0.0074x+359.35 in the flood season, with a variation range of 90 km, and y=−4×10−10x3−1 × 10−5x2−0.1937x − 1232.9 in the dry season, with a variation range of 200 km. The relationship between the tidal level limit and river discharge is y=6×10−8x2−0.0096x+775.94 in the flood season, with a variation range of 127 km, and y=0.3428x2−17.9x+777.55 in the dry season, with a variation range of 83 km, which is located far upstream of the Datong hydrological station.


2021 ◽  
Vol 5 (5) ◽  
pp. 20-26
Author(s):  
Yaxi Cai ◽  
Xiaodong Yang

The sediment sequence analysis of Mann-Kendall method based on major rivers of 10 hydrological station in the middle reaches of the Yellow River [1]. The results show that: The main rivers in the middle reaches of the Yellow River hydrologic station sediment overall showed a trend of decreased significantly. Sediment discharge of all stations except Gao Jiachuan station have reached the maximum in 1956-1969s [2-3]. Among various hydrologic station sediment discharge of inter-generational are generally shows the tendency of reducing year by year. Calculate the sediment transport of major river basin of Yellow River, which average is 0.63.


2021 ◽  
Vol 13 (16) ◽  
pp. 3199
Author(s):  
Kaijie Niu ◽  
Qingfang Hu ◽  
Yintang Wang ◽  
Hanbo Yang ◽  
Chuan Liang ◽  
...  

In recent decades, strong human activities have not only brought about climate change including both global warming and shifts in the weather patterns but have also caused anomalous variations of hydrological elements in different basins all around the world. Studying the mechanisms and causes of these hydrological variations scientifically is the basis for the management of water resources and the implementation of ecological protection. Therefore, taking the Yongding River mountain area as a representative watershed in China, the changes of different observed and simulated hydro-meteorological variables and their possible causes are analyzed on an inter-annual scale based on ground based observations and remotely sensed data of hydrology, meteorology and underlying surface characteristics from 1956 to 2016. The results show that the annual natural runoff of Guanting hydrological station in the main stream of the Yongding River, Cetian hydrological station and Xiangshuibao hydrological station in the tributary of the Yongding River all have a significant decreasing trend and abrupt changes, and all the abrupt change points of the annual natural runoff series of the three hydrological stations appear in the early 1980s. On the inter-annual scale, the water balance model with double parameters is unable to effectively simulate the natural surface runoff after the abrupt change points. The annual average precipitation after the abrupt change points decreases by no more than 10%, compared with that before the abrupt change points. However, the precipitation from July to August, which is the main runoff-production period, decreases by more than 25%, besides the intra-annual temporal distribution of precipitation becoming uniform and a significant decrease in effective rainfall, which is the source of the runoff. Meanwhile, the NDVI in the basin show an increasing trend, while the groundwater level and land water storage decrease significantly. These factors do not lead only to the continuous reduction of the annual natural runoff in the Yongding River mountain area from 1956 to 2016, but also result in significant changes of the hydro-meteorological relationship in the basin.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2051
Author(s):  
Nho Lan Nguyen ◽  
Thu Nga Do ◽  
Anh Duc Trinh

Fraction of young water (Fyw) and mean transit time (MTT, τ) calculated from water isotope profiles are valuable information for catchment hydrological assessment, especially in anthropogenically impacted region where natural conditions may not be decisive to catchment hydrology. The calculation of Fyw and MTT were performed on three subsets of δ18O_H2O data collected at the Hanoi meteo-hydrological station, Red River, in three periods; 2002–2005, 2015, and 2018–2019. The mean (min and max) values of δ18O_H2O in rainwater over the three periods are, respectively, −5.3‰ (−11.0 and −1.2‰), −5.4‰ (−10.7 and −1.4‰), and −4.5‰ (−13.9 and 1.7‰). The corresponding values in river water are −8.4‰ (−9.8 and −6.9‰), −8.5‰ (−9.1 and −7.7‰), and −8.4‰ (−9.5 and −7.2‰), respectively. The mean of Fyw calculated from the δ18O_H2O data for different periods is 22 ± 9%, 10 ± 5%, and 8 ± 3%. Mean transit time is 4.69 ± 15.57, 1.65 ± 1.53, and 2.06 ± 1.87 years. The calculated Fyw (MTT) is negatively (positively) proportional to change in reservoir volume over the three periods, which is logical, since reservoirs tend to keep more water in the catchment and slower down water flow. The strong variation of Fyw and τ, two essential variables characterizing the catchment hydrology, represents an anthropogenic impact in the Red River system.


2021 ◽  
Vol 1 (1) ◽  
pp. 106-115
Author(s):  
C.A. Məmmədova

Abstract: The article is devoted to the assessment of water quality according to chemical indicators in the vileshchay water reservoir, which is the main source of drinking water supply in Masalli region. The study used the results of the analysis of water samples covering the years 1994-2017 of the Shikhlar hydrological station operating on the vileshchay, the main source of nutrition of the reservoir. The basic ions and water hardness were determined. The results of the analysis were compared with the existing Sanitary Norms and Regulations, as well as with the World health Organization's permissible Solidarity limit, and the results obtained were analyzed. unlike other lankaran rivers, vileshchay water belongs to the chlorine class of the sodium and potassium group, as the river is dominated by chlorine from anions and sodium and potassium from cations during the year. Keywords: Vileshchay reservoir, water quality, ionic composition, water hardness, permissible concentration limit.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 542
Author(s):  
Guangxing Ji ◽  
Leying Wu ◽  
Liangdong Wang ◽  
Dan Yan ◽  
Zhizhu Lai

Previous studies mainly focused on quantifying the contribution rate of different factors on annual runoff variation in the source region of the Yellow River (SRYR), while there are few studies on the seasonal runoff variation. In this study, the monthly water storage and monthly actual evaporation of SRYR were calculated by the monthly ABCD model, and then a seasonal Budyko frame was constructed. Finally, the contribution rate of climatic and anthropic factors on the seasonal runoff variation in Tangnaihai hydrological station were quantitatively calculated. It turned out that: (1) The changing point of runoff data at Tangnaihai hydrological station is 1989. (2) The ABCD monthly hydrological model could well simulate the monthly runoff variation of Tangnaihai hydrological station. (3) Anthropic factors play a major role in runoff change in spring, summer, and winter, while climatic factors play a major role in runoff change in autumn.


2021 ◽  
Vol 2 (10 (110)) ◽  
pp. 6-17
Author(s):  
Dmytro Olefir ◽  
Anna Panasenko

Economic losses from floods have become catastrophic due to the increase in the number and scale of their propagation. Existing procedures for passing floods and pre-preparing reservoirs for flood water acceptance are ineffective and need to be improved. Therefore, the task to devise a methodology that would eliminate these shortcomings was urgent. This paper has proposed a procedure for calculating the passage of floods based on the forecasts of water inflow, taking into consideration the characteristics of the flood wave and the mode of reservoir filling, which makes it possible to bring down (reduce) the maximum flow rate through a waterworks by accumulating floodwaters in the reservoir. The software package Mike 11 (Danish Institute, Denmark) was employed to build a hydrodynamic model of floodwater movement along the examined river section from a hydrological station to a waterworks, which makes it possible to determine the levels of water and the flow rate in a reservoir at any time in the form of free surface curves when passing floods of various range. Based on the devised methodology, recommendations have been compiled for the forced discharges of water through hydroelectric turbines (in m3/s) when passing floods of various probabilities (which is especially important for floods whose probability is 0.01 %). The constructed hydrodynamic model of floodwater movement through a reservoir has allowed the verification of the devised procedure. The procedure was devised in order to effectively pass floodwaters and bring down the maximum flow rate through a waterworks. The introduction of the methodology for calculating the passage of floods could make it possible to avoid idle water discharge through the water drains of waterworks to the lower pool and provide for the most efficient utilization of floodwater resources


2021 ◽  
Vol 233 ◽  
pp. 01061
Author(s):  
Deng Li ◽  
Hu Fengjiao ◽  
Chen Jingxing

in order to achieve more effective management and monitoring of water environment, an automatic monitoring system is designed for the water environment of Heihe River Basin in Zhangye through GIS (geographic information system). The EFDC (environmental fluid dynamics code) model is used to establish the automatic monitoring model of water environment, and the annual average data of permanganate index of Yingluoxia, Gaoya hydrological station, and Liubaqiao in Heihe River Basin from 2015 to 2019 are used to fit and verify the water quality model. The trend suggests that the simulated data of the three observation points are close to the measured data. The fitting degree reveals that the R index of fitting curve of Liubaqiao is 0.793, while that of Yingluoxia, and Gaoya hydrological station is higher than 0.8, with good fitting degree. The average relative error between the simulated value and the measured value of permanganate index (mg/L) is small, the change trend is basically consistent, and the prediction error is small. The model is successfully established and applied to the automatic monitoring and early warning system of total phosphorus index.


2021 ◽  
Vol 4 (1) ◽  
pp. 233-250
Author(s):  
Jianrong Zhu ◽  
Wei Qiu ◽  
Chuanmin Tang ◽  
Xinyue Cheng

This study assesses the seasonal regulation of river discharge by hydropower dam-induced cascade reservoirs in the Lancang River and its effect on downstream freshwater and estuarine saltwater intrusion. There are eight main reservoirs in the Lancang River, with a total regulation capacity of 25.67 billion m3, which regulates river discharge by conserving water in the flood season and releasing water in the dry season. River discharge during the dry season from 1960 to 2009 accounted for 21% of the annual discharge before the cascade reservoirs were constructed and increased to 33% from 2010 to 2015 after the cascade reservoirs were constructed at the Jinghong hydrological station, which is the lowermost station in the Lancang River. During the 2016 extreme drought in the lower Mekong River basin, the river discharge increased by 550, 367, 1283, 969, and 524 m3/s in January, February, March, April, and May, respectively, regulated by the cascade reservoirs at the Jinghong hydrological station. Considering runoff, tides, wind, and continental shelf currents, a high-resolution three-dimensional numerical model was used to simulate the effect of regulation of river discharge by the cascade reservoirs in the Lancang River on the saltwater intrusion in the Mekong River Delta (MRD). The simulation results show that the seasonal regulation of river discharge by the cascade reservoirs in the Lancang River weakens estuarine saltwater intrusion during the dry season, especially in the sand bar areas, which is much more significant in the extreme dry season of 2016. The seasonal regulation of river discharge by the reservoirs in the Lancang River makes the seasonal distribution of downstream river discharge more uniform, favoring downstream freshwater utilization and alleviating flood disasters and saltwater intrusion in the MRD.


Sign in / Sign up

Export Citation Format

Share Document