Research on Set Retarder of High and Super High Strength Alkali -Activated Slag Cement and Concrete

2011 ◽  
Vol 477 ◽  
pp. 164-169 ◽  
Author(s):  
Chang Hui Yang ◽  
Fang Wu ◽  
Ke Chen

The set of alkali-activated slag cement (AASC) and concrete and the measures for set-retarding were reviewed. Due to the fast set of high and super high strength alkali-activated slag cement and concrete, an inorganic compound set retarder YP-3 was developed. The effect of the retarder on setting time and strength as well as heat evolution of AASC were tested, and the mechanism of the retarder was analysed. Results show that the retarder can regulate the initial set of high strength AASC in the range of 29hrs with little negative effect on its strength development. The retarder could react with silicate ions from liquid to rapidly form a compact film in early age of hydration of AASC, the film covered the surface of slag and obstructed R+ and OH- in contact with slag particle directly. Consequently the set of AAC was delayed.

Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2072 ◽  
Author(s):  
Sung Choi ◽  
Kwang-Myong Lee

The performance of alkali-activated slag (AAS) paste using activators of strong alkali components is affected by the type, composition, and dosage of the alkaline activators. Promoting the reaction of ground granulated blast furnace slag (GGBFS) by alkaline activators can produce high-strength AAS concrete, but the workability might be drastically reduced. This study is aimed to experimentally investigate the heat release, workability, and setting time of AAS pastes and the compressive strength of AAS mortars considering the Na2O content and the ratio of Na2O to SiO2 (Ms) of binary alkaline activators blended with sodium hydroxide and sodium silicate. The test results indicated that the AAS mortars exhibited a high strength of 25 MPa at 24 h, even at ambient temperature, even though the pastes with an Na2O content of ≥6% and an Ms of ≥1.0 exhibited an abrupt decrease in flowability and rapid setting.


2021 ◽  
Vol 8 ◽  
Author(s):  
Fu Bo ◽  
Cheng Zhenyun

In order to investigate the effect of Cr6+ on the properties of alkali-activated slag cement (AAS), the effects of added dosage of Na2Cr2O4 on the setting time and compressive strength of AAS were measured. The leaching concentration of Cr6+ from AAS cement stone was measured using dual-beam UV-visible spectrophotometry. The effect of Na2Cr2O4 on the hydration kinetics of AAS cement was monitored by microcalorimetry and the corresponding kinetic parameters were analyzed. The pore solution from AAS was collected and analyzed using the high pressure press method. The effects of Na2Cr2O4 on the hydration products of AAS cement were observed and compared using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The experimental results showed that the AAS hydration process was markedly affected by Na2Cr2O4 dosage. The setting time of AAS pastes was increased and the compressive strength of cement stones was reduced with increasing dosage of Na2Cr2O4. With the development of AAS hydration, the leaching concentration of Na2Cr2O4 gradually decreased. Na2Cr2O4 did not affect the dissolution of slag particles, but impeded the formation of C-S-H gel. The Cr6+ was immobilized chemically in the form of needle-like CaCrO4 particles formed by the chemical reaction between Na2Cr2O4 and Ca2+ leaching from the slag.


1995 ◽  
Vol 7 (27) ◽  
pp. 93-102 ◽  
Author(s):  
Shao-Dong Wang ◽  
Xin-Cheng Pu ◽  
K. L. Scrivener ◽  
P. L. Pratt

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1571 ◽  
Author(s):  
Taewan Kim ◽  
Jae Hong Kim ◽  
Yubin Jun

Previous studies of alkali-activated slag cement (AASC) using nano-silica have mentioned mostly powdered nano-silica and binder weight replacement methods, which have a rapid decrease in fluidity, a short setting time and a low nano-silica replacement rate (< 5%). In this study, colloidal nano-silica (CNS) was used and the mixing-water weight substitution method was applied. The substitution method was newly applied to improve the dispersibility of nano-silica and to increase the substitution rate. In the experiment, the CNS was replaced by 0, 10, 20, 30, 40, and 50% of the mixing-water weight. As a result, as the substitution rate of CNS increased, the fluidity decreased, and the setting time decreased. High compressive strength values and increased rates were also observed, and the diameter and volume of pores decreased rapidly. In particular, the increase of CNS replacement rate had the greatest effect on decrease of medium capillary pores (50–10 nm) and increase of gel pores (< 10 nm). The new displacement method was able to replace up to 50% of the mixing water. As shown in the experimental results, despite the high substitution rate of 50%, the minimum fluidity of the mixture was secured, and a high-strength and compact matrix could be formed.


2011 ◽  
Vol 399-401 ◽  
pp. 1246-1250
Author(s):  
Xian Feng Liu ◽  
Jia Hui Peng ◽  
Chang Hui Yang ◽  
Yu Yan Shu ◽  
Da Chang Wu

Alkali activated slag cement and concrete are high strength, rapid hardening, low heat of hydration, good durability and so on. Whereas, too high viscosity and bad workability of the fresh mixture is the crux of the matter to embarrass application of alkali-activated slag cement and concrete. Development of special superplasticizer for alkali activated slag cement and concrete is a worth exploring way to solve the problem, and the study on the surface tension of simulated solutions of alkali activated slag cement system is one of the basic researches about the special superplasticizer. In this paper, the surface tension of surfactant-alkali-water was studied by Wilhelmy method. The results showed, first, water-glass had the best efficacity of several alkali activators, when the modulus of water-glass was 1.5 and dosage of water-glass by Na2O was 8%, the surface tension was reduced by 33 mN/m and reduced to 39.9mN/m; second, [CH3(CH2)9]2N(CH3)2Cl had the best efficacity of several surfactants, when the concentration of [CH3(CH2)9]2N(CH3)2Cl was 50g/L, the surface tension was reduced by 35.3 mN/m and reduced to 32.5 mN/m; finally, the effect of surfactant and alkali together on the surface tension of water was complex, surfactants had hardly effective in water glass.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6293
Author(s):  
Taewan Kim ◽  
Choonghyun Kang ◽  
Kiyoung Seo

Experiments on the development and properties of aerated concrete based on alkali-activated slag cement (AASC) and using Zn powder (ZP) as a gas agent were carried out. The experiments were designed for water-binding material (w/b) ratios of 0.35 and 0.45, curing temperatures of 23 ± 2 °C and 40 ± 2 °C, and ZP of 0.25%, 0.50%, 0.75%, and 1.0%. ZP generates hydrogen (H2) gas in AASC to form pores. At a w/b of 0.35, the curing temperature had little effect on the pore size by ZP. However, a w/b of 0.45 showed a clear correlation that the pore diameter increased as the curing temperature increased. The low w/b of 0.35 showed a small change in the pore size according to the curing temperature due to the faster setting time than 0.45 and the increased viscosity of the paste. Therefore, at a termination time exceeding at least 60 min and a w/b of 0.45 or more, it was possible to increase the size and expansion force of the pores formed by the ZP through the change of the curing temperature. ZP showed applicability to the manufacture of AASC-based aerated concrete, and the characteristics of foaming according to the curing temperature, w/b ratio, and ZP concentration were confirmed.


2018 ◽  
Vol 761 ◽  
pp. 19-22 ◽  
Author(s):  
Vlastimil Bílek Jr. ◽  
Lukáš Kalina ◽  
Ondřej Fojtík

One of the largest obstacles for the wider use of alkali-activated slag (AAS) in a building industry is its severe drying shrinkage. According to some studies shrinkage-reducing admixtures (SRAs) could be a solution of this problem, but they were also reported to have a fatal impact on AAS hydration resulting in a serious strength development slowdown. The aim of this paper was to investigate this phenomenon in a wide range of the waterglass doses (4–12% Na2O of the slag mass). Mortars without and with 2% of SRA based on hexylene glycol were prepared and their shrinkage and compressive strength development was tested. By far the highest shrinkage reduction was observed for the lowest doses of waterglass, but these were also the cases of the highest compressive strength decrease. However, it is possible to suppress the negative effect of SRA on AAS strength development through the activator dose increase with certainly decreased shrinkage reducing ability of SRA.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 2874 ◽  
Author(s):  
In Kyu Jeon ◽  
Jae Suk Ryou ◽  
Sadam Hussain Jakhrani ◽  
Hong Gi Kim

This study investigates the potential of light-burnt dolomite (LBD) as a supplementary cementitious material with ground granulated blast furnace slag (GGBFS) and Ordinary Portland cement (OPC). In this work, LBD was substituted for up to 20% of GGBFS in sodium sulfate-activated slag systems. The effects of LBD incorporation on the flow, setting time, compressive and flexural strength development, and drying shrinkage were explored with, X-ray diffraction and thermogravimetric analyses. LBD incorporation resulted in greater strength development of an alkali-activated slag system. The optimum LBD content for strength development was 10%, regardless of ordinary Portland cement content. In addition, LBD decreased the drying shrinkage, accelerated the hydration process, and induced hydrotalcite formation, which can be attributed to the reactive MgO inside LBD.


2020 ◽  
Vol 23 (3) ◽  
pp. 167-176
Author(s):  
Jing Zhu ◽  
Wenzhong Zheng ◽  
Lili Xie ◽  
Ning Ren ◽  
Yuxuan Zhang ◽  
...  

The properties and microstructures of alkali-activated slag cement (AASC) exposed to 20~1200°C were probed in this paper. The aim is to develop an eco-friendly fireproof high-strength adhesive with an optimum ratio and evaluate its usability for CFRP sheets bonded to concrete. The blast furnace slag and fly ash were employed as source materials (activated by potassium silicate, NaOH and Portland cement). The effects of slag content, activator nature and heating temperature on the compressive or bond properties were analyzed. The microstructures of the AASC exposed to different high temperatures were studied by two different techniques, including SEM and XRD analyses. The effects of temperature on the mechanical properties of AASC were first rising then descending, and the basic reason for the degradation of macro-mechanical properties is the deterioration of AASC microstructure. It is proved that AASC has comparable reinforcing effects as those of organic epoxy matrix.


Sign in / Sign up

Export Citation Format

Share Document