Electrophoretic Deposition of Cadmium Sulfide Nanoparticles: Electric Field and Particle Size Effects

2012 ◽  
Vol 507 ◽  
pp. 95-99 ◽  
Author(s):  
Israel López ◽  
Alejandro Vázquez ◽  
Idalia Gómez

The present work shows the electric field and particle size effects on the formation of nanostructured arrays by electrophoretic deposition of cadmium sulfide (CdS) nanoparticles. The CdS nanoparticles with mean diameter below 6 nm were prepared by a microwave assisted synthesis. These nanoparticles were aged for one and two weeks at room temperature in order to produce nanoparticle agglomeration. The CdS nanoparticles were deposited on aluminum plates, with 1 cm of distance between them, using a constant applied voltage of 600 and 900 mV for 1 min. The nanostructures formed using CdS nanoparticles freshly prepared under 900 mV show spherical morphology. Under a voltage of 600 mV, nanostructures with elongated morphology were obtained.

2012 ◽  
Vol 507 ◽  
pp. 101-105 ◽  
Author(s):  
Alejandro Vázquez ◽  
Israel López ◽  
Idalia Gómez

Cadmium sulfide (CdS) and zinc sulfide (ZnS) nanostructures were formed by means of electrophoretic deposition of nanoparticles with mean diameter of 6 nm and 20 nm, respectively. Nanoparticles were prepared by a microwave assisted synthesis in aqueous dispersion and electrophoretically deposited on aluminum plates. CdS thin films and ZnS one-dimensional nanostructures were grown on the negative electrodes after 24 hours of electrophoretic deposition at direct current voltage. CdS and ZnS nanostructures were characterized by means of scanning electron (SEM) and atomic force (AFM) microscopies analysis. CdS thin films homogeneity can be tunable varying the strength of the applied electric field. Deposition at low electric field produces thin films with particles aggregates, whereas deposition at relative high electric field produces smoothed thin films. The one-dimensional nanostructure size can be also controlled by the electric field strength. Two different mechanisms are considered in order to describe the formation of the nanostructures: lyosphere distortion and thinning and subsequent dipole-dipole interactions phenomena are proposed as a possible mechanism of the one-dimensional nanostructures, and a mechanism considering pre-deposition interactions of the CdS nanoparticles is proposed for the CdS thin films formation.


2021 ◽  
Vol 291 ◽  
pp. 118120
Author(s):  
Qiming Mo ◽  
Xingjian Yang ◽  
Jinjin Wang ◽  
Huijuan Xu ◽  
Wenyan Li ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (79) ◽  
pp. 75541-75551 ◽  
Author(s):  
Feng Jiang ◽  
Jian Cai ◽  
Bing Liu ◽  
Yuebing Xu ◽  
Xiaohao Liu

Palladium particles of different sizes obtained directly and indirectly by various methods were studied to clarify the particle size effect in the selective hydrogenation of cinnamaldehyde (CAL).


2008 ◽  
Vol 147 (7-8) ◽  
pp. 258-261 ◽  
Author(s):  
Jiyin Zhao ◽  
Lei Shi ◽  
Shiming Zhou ◽  
Laifa He ◽  
Lin Chen

CrystEngComm ◽  
2016 ◽  
Vol 18 (22) ◽  
pp. 4172-4179 ◽  
Author(s):  
Oliver M. Linder-Patton ◽  
Witold M. Bloch ◽  
Campbell J. Coghlan ◽  
Kenji Sumida ◽  
Susumu Kitagawa ◽  
...  

Controlling the particle size of a flexible metal–organic framework demonstrates that a 2D to 3D transformation gives a kinetically-trapped, structurally-locked form.


Sign in / Sign up

Export Citation Format

Share Document