Sintering Performance and Mechanical Properties of Titanium Compacts Prepared by Spark Plasma Sintering

2012 ◽  
Vol 706-709 ◽  
pp. 217-221 ◽  
Author(s):  
Hiroshi Izui ◽  
Genki Kikuchi

Titanium alloys were produced by blended elemental powder metallurgy (P/M) method. We focused on the effect of alloying elements (Fe, Mo, and Al) on the consolidation and mechanical properties of Ti compacts prepared by spark plasma sintering. The effects of amount of alloying elements and sintering temperature on the relative density and tensile properties of Ti compacts were investigated. The addition of β-stabilizing elements (Fe and Mo) significantly improved the densification of Ti compacts, where the relative density ratio of Ti-5 wt% Mo specimen became higher than 99.9 %, and Ti-5 wt% Fe specimen higher than 99.0 %. On the other hand, the addition of Al as α-stabilizing element led to improve the relative density of Ti-5 wt% Al compact with higher than 99.9 %. The tensile property for sintered Ti-5 wt% Mo compact had the highest elongation of 16 %. It will be discussed the microstructures and tensile property of the compacts.

2011 ◽  
Vol 690 ◽  
pp. 469-472 ◽  
Author(s):  
Genki Kikuchi ◽  
Hiroshi Izui

In this study, we focused on the effect of alloying elements (Fe, Mo, and Al) on the consolidation and mechanical properties of Ti compacts. The elemental blended powders is manufactured by spark plasma sintering. The effects of amount of alloying elements and sintering temperature on the relative density and tensile properties of Ti compacts were investigated. The addition of β-stabilizing elements (Fe and Mo) was found significantly improve the densification of Ti compacts, where the sintered density ratio of Ti-5 wt.% Mo specimen was higher than 99.9 %, and Ti-5 wt.% Fe specimen was higher than 99.0 %. On the other hand, addition of Al as α-stabilizing element showed the sintered density rate of Ti-5 wt.% Al specimen was higher than 99.9 %. The tensile property for sintered Ti-5 wt.% Mo specimens had the highest elongation of 16 %. It will be discussed the microstructures and tensile property of the compacts.


2014 ◽  
Vol 682 ◽  
pp. 188-191 ◽  
Author(s):  
Lilia I. Shevtsova ◽  
T.S. Sameyshcheva ◽  
D.D. Munkueva

The structure and mechanical properties of materials fabricated by spark plasma sintering of mechanically activated mixture of nickel and aluminum nanopowders were investigated. On account of the elemental powders ratio formation of Ni3Al compound was expected. Relative density of sintered samples was equal to ~ 95 %, microhardness of materials was 6540 MPa. Ultimate tensile strength of samples tested according to three-point bending scheme exceed 1100 MPa.


2014 ◽  
Vol 602-603 ◽  
pp. 380-383
Author(s):  
Chao He ◽  
Xiao Fei Shi ◽  
Xin Yan Yue ◽  
Jiang Jun Wang ◽  
Hong Qiang Ru

SiAlON-cBN composites with different contents of cBN were consolidated by spark plasma sintering (SPS) at 1450°C using Y2O3, B2O3 and Al as additives. The effect of cBN content on the density, phase compositions, microstructures and mechanical properties of β-SiAlON-cBN composites was investigated. With increasing the cBN content, the density and hardness of β-SiAlON-cBN composites decreased. Fracture toughness could increase thanks to the crack deflection resulted from the cBN particles. For β-SiAlON-10 wt% cBN composites, the optimum hardness and highest relative density were 13 GPa and 96.4 %, respectively. For β-SiAlON-40 wt% cBN composites, the highest fracture toughness was KIC = 5.3 MPa∙m1/2.


2017 ◽  
Vol 726 ◽  
pp. 143-147
Author(s):  
Chen Chen ◽  
Chang Chun Lv ◽  
Cheng Biao Wang ◽  
Zhi Jian Peng

In this work, we fabricated ZrB2-SiC-ZrSi2 composites containing different fractions (0.5-5 vol.%) of ZrSi2 by spark plasma sintering at 1600 °C under a uniaxial pressure of 30 MPa. The addition effect of ZrSi2 on the composition, microstructure and mechanical properties of the composites were investigated. The results indicated that the densification of ZrB2-SiC-ZrSi2 composites could be enhanced along with the increase of the added fraction of ZrSi2, with its relative density reaching the maximum of about 85.6% when 3 vol.% of ZrSi2 was added. The hardness of the composites would decrease after the addition of ZrSi2 in the range of 960-1200 HV5. The flexural strength initially increased and then decreased with the addition of ZrSi2, reaching a maximum of about 330 MPa when 3 vol.% of ZrSi2 was added.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2443 ◽  
Author(s):  
Zhenhua Wang ◽  
Jiheng Jia ◽  
Boxiang Wang ◽  
Yulin Wang

Ultrafine grained WC-12Co-0.2VC (named UYG12V) cemented carbides were prepared via the two-step spark plasma sintering (SPS) in this study. First, the effects of the sintering temperature on the relative density and WC grain size of UYG12V cemented carbides were studied. The results show that regular WC grains form when sintered at 1300 °C. The sintered body begins to rapidly densify and WC grains grow slowly when sintered at 1200 °C. Thus, the first-step (T1) and the second-step (T2) temperatures in the two-step SPS of UYG12V are 1300 °C and 1200 °C, respectively. The effect of the holding time during the first and second steps on the mechanical properties was also studied. The results show that the UYG12V cemented carbide sintered at 1300 °C for 3 min and then at 1200 °C for 5 min has the best comprehensive mechanical properties, exhibiting the average particle size, Vickers hardness, fracture toughness, relative density, and bending strength of 271 nm, 18.06 GPa, 12.25 MPa m1/2, 99.49%, and 1960 MPa, respectively.


2012 ◽  
Vol 512-515 ◽  
pp. 739-743 ◽  
Author(s):  
S.Z. Zhu ◽  
D.L. Gong ◽  
Z. Fang ◽  
Q. Xu

For high thermal conductivity and high electrical conductivity, copper is a good electrode material. The wearing resistance and spark resistance of Cu can be improved with the addition of ZrB2. ZrB2-Cu composites with high Cu volume fraction was successfully prepared by spark plasma sintering (SPS) process in this paper. The microstructure and properties of the sintered samples were characterized. The effect of the sintering temperature and the ZrB2 content in composites on the relative density and properties of the composites were investigated. The results show that the relative density and mechanical properties increase with the sintering temperature increasing. The optimum sintering temperature is 900 °C for 10wt.% ZrB2-Cu, 1000 °C for 20wt.% ZrB2-Cu and 1050 °C for 30wt.% ZrB2-Cu. With the ZrB2 content in composites increasing from 10wt.% to 30 wt.%, the electrical resistivity increases from 2.25×10-6 Ω.cm to 8.82×10-6 Ω.cm, the flexural strength decreases from to 539.1 MPa to 482.2 MPa and the fracture toughness decreases from to 15 MPa.m 1/2 to 9 MPa.m 1/2. The hardness (HV) of ZrB2-Cu composites is significantly enhanced by the ZrB2 particulate reinforcement, increasing from 1410 MPa for 10 wt.% ZrB2 to 2480 MPa for 30wt.% ZrB2.


Author(s):  
Shufeng Li ◽  
Hiroshi Izui ◽  
Michiharu Okano

This paper discusses the dependence of the mechanical properties and microstructure of sintered hydroxyapatite (HA) on the sintering temperature and pressure. A set of specimens was prepared from as-received HA powder and sintered by using a spark plasma sintering (SPS) process. The sintering pressures were set at 22.3MPa, 44.6MPa, and 66.9MPa, and sintering was performed in the temperature range from 800°Cto1000°C at each pressure. Mechanisms underlying the interrelated temperature-mechanical and pressure-mechanical properties of dense HA were investigated. The effects of temperature and pressure on the flexural strength, Young’s modulus, fracture toughness, relative density, activation energy, phase stability, and microstructure were assessed. The relative density and grain size increased with an increase in the temperature. The flexural strength and Young’s modulus increased with an increase in the temperature, giving maximum values of 131.5MPa and 75.6GPa, respectively, at a critical temperature of 950°C and 44.6MPa, and the fracture toughness was 1.4MPam1∕2 at 1000°C at 44.6MPa. Increasing the sintering pressure led to acceleration of the densification of HA.


2014 ◽  
Vol 616 ◽  
pp. 52-55 ◽  
Author(s):  
Ying Li ◽  
Hirokazu Katsui ◽  
Takashi Goto

Titanium carbide (TiC) was consolidated with 20 mol% zirconium carbide (ZrC) by spark plasma sintering in the temperature range of 1773–2473 K, and the phase formation, microstructure, relative density and mechanical properties were investigated. The composite consisted of Ti-rich (Ti, Zr)C and Zr-rich (Zr, Ti)C solid solutions at 1773–2373 K, and was single-phase (Ti, Zr)C at 2473 K. The relative density of the composite was over 98% above 2073 K. The composite prepared at 2273 K exhibited the maximumHVof 29.7 GPa with theKICof 3.76 MPa m1/2.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Changchun Lv ◽  
Zhijian Peng ◽  
Zhiqiang Fu ◽  
Chengbiao Wang

TiCN-based cermets with varied fractions of Si3N4nanopowder (0–5 wt.%) were prepared by spark plasma sintering. The microstructural and mechanical properties of these cermets were investigated. In general, with increasing addition amount of Si3N4nanopowder the relative density as well as mechanical properties of the as-prepared TiCN cermets increased first and then decreased. The samples containing 2 wt.% Si3N4nanopowder presented the best performance with the relative density of about 98%, bending strength of 1000 MPa, and Vickers microhardness of about 1810 HV10.


2016 ◽  
Vol 697 ◽  
pp. 188-192
Author(s):  
Jia Xin An ◽  
Wen Dong Xue ◽  
Feng Rui Zhai ◽  
Ruo Meng Xu ◽  
Jia Lin Sun

BN-Si3N4 composite ceramic wave-transparent materials with excellent mechanical properties were prepared by spark plasma sintering (SPS) using h-BN and α-Si3N4 powders as raw materials, Al2O3 and Y2O3 as sintering aids. The influence of sintering pressure on density and mechanical properties of BN-Si3N4 composite ceramics were studied. The phases were observed by X-ray diffraction (XRD), and the microstructures were identified by scanning electron microscopy (SEM). The results showed that with the sintering pressure increases, the relative density, bending strength and fracture toughness of the composite ceramics were significantly increased, and the porosity decreased rapidly. The effects of pressure on the properties of the composite ceramics was not significant at >40MPa, so 40MPa is optimal for the composite ceramics to gain good overall performance, i.e. the relative density was 89.1%, the porosity was 2.3%, the bending strength reached 215.4 MPa, and the fracture toughness was 3.1/MPa·m1/2.


Sign in / Sign up

Export Citation Format

Share Document