A Valveless MEMS Pump Utilizing a Thin Film Permanent Magnet

2012 ◽  
Vol 523-524 ◽  
pp. 551-556
Author(s):  
Chao Zhi ◽  
Tadahiko Shinshi ◽  
Minoru Uehara

A valveless MEMS pump utilizing a multi-layer thin film NdFeB/Ta permanent magnet (TFPM) has been presented. The MEMS pump consists of a diaphragm actuator utilizing 6μm in thickness and 3 mm in diameter TFPM which is bonded on a membrane made of polydimethylsiloxane (PDMS) of about 80μm thickness, a pump chamber and a pair of diffuser elements. TFPM is sputtered on a 50μm thick Nb sheet. The diffuser elements are used to generate a one-way fluid flow. The chamber is made of acryl plates. UV negative film resist is used to bond different layers. Applying amplitude of ±7.5V square wave voltage, the pump flow rate reaches to 130μL/min at frequency of 15Hz.

2018 ◽  
Vol 46 (4) ◽  
pp. 279-285 ◽  
Author(s):  
Maxime Leclerc ◽  
Clémence Bechade ◽  
Patrick Henri ◽  
Elie Zagdoun ◽  
Erick Cardineau ◽  
...  

We conducted a prospective study to assess the impact of the blood pump flow rate (BFR) on the dialysis dose with a low dialysate flow rate. Seventeen patients were observed for 3 short hemodialysis sessions in which only the BFR was altered (300,350 and 450 mL/min). Kt/V urea increased from 0.54 ± 0.10 to 0.58 ± 0.08 and 0.61 ± 0.09 for BFR of 300, 400 and 450 mL/min. For the same BFR variations, the reduction ratio (RR) of β2microglobulin increased from 0.40 ± 0.07 to 0.45 ± 0.06 and 0.48 ± 0.06 and the RR phosphorus increased from 0.46 ± 0.1 to 0.48 ± 0.08 and 0.49 ± 0.07. In bivariate analysis accounting for repeated observations, an increasing BFR resulted in an increase in spKt/V (0.048 per 100 mL/min increment in BPR [p < 0.05, 95% CI (0.03–0.06)]) and an increase in the RR β2m (5% per 100 mL/min increment in BPR [p < 0.05, 95% CI (0.03–0.07)]). An increasing BFR with low dialysate improves the removal of urea and β2m but with a potentially limited clinical impact.


2007 ◽  
Vol 24 (Supplement 39) ◽  
pp. 53
Author(s):  
R. Valero ◽  
P. Santos-Cidón ◽  
M. Net ◽  
L I. Capdevila ◽  
J C. García-Valdecasas

ASAIO Journal ◽  
1993 ◽  
Vol 39 (2) ◽  
pp. 126-131
Author(s):  
Ryuji Tominaga ◽  
Kazuhiro Kurisu ◽  
Fumio Fukumura ◽  
Atsuhiro Nakashima ◽  
Manabu Hisahara ◽  
...  

1990 ◽  
Vol 73 (3A) ◽  
pp. NA-NA
Author(s):  
F H Kem ◽  
W J Greeley ◽  
R M Ungerleider ◽  
T J Quill ◽  
B. Baldwin ◽  
...  

2013 ◽  
Vol 7 (2) ◽  
pp. 196-204 ◽  
Author(s):  
Chao Zhi ◽  
◽  
Tadahiko Shinshi ◽  
Minoru Uehara ◽  

In this paper we present the design, analysis and an experimental evaluation of a micro pump utilizing a 20 µm thick, 3 mm diameter Thin Film Permanent Magnet (TFPM). The pump includes an electromagnet that uses a magnetic closed circuit. The design of the electromagnet was optimized and was theoretically explained. A PolyDiMethylSiloxane (PDMS) diaphragm with a thickness of approximately 80 µm was used in the pump. The electromagnetic force on the diaphragmwas calculated using a finite elementmethod. Large deformation analysis was used to calculate the displacement of the diaphragm. The force and displacement measurements agreed well with those calculated by simulation. The performance of the fabricated pump was also evaluated. During pumping, the displacement of the diaphragm reached 500 µm, which is the same as the height of the chamber. Furthermore, because of the large displacement, the pump is bubble tolerant and self-priming. A maximum flow rate of 50 µL/min and a maximum pressure of 110 Pa were achieved. A square wave input signal was demonstrated to be more effective than a sinusoidal signal in generating a high flow rate.


Perfusion ◽  
1986 ◽  
Vol 1 (4) ◽  
pp. 245-253 ◽  
Author(s):  
RT Mathie ◽  
JB Desai ◽  
KM Taylor

Hepatic blood flow was investigated in two groups of eight anaesthetized dogs during and after one hour of either pulsatile or non-pulsatile cardiopulmonary bypass (CPB). Mean perfusion pressure was maintained at 60 mmHg. Hepatic arterial (HA) and portal venous (PV) blood flows were measured using electromagnetic flow probes, and hepatic O 2 consumption determined. The results demonstrate that: (a) pulsatile CPB reduces peripheral vascular resistance during and after perfusion, and more effectively preserves pump flow rate and cardiac output than non-pulsatile CPB; (b) total liver blood flow is sustained more effectively by pulsatile CPB than by non-pulsatile CPB due to relative preservation of both HA and PV flows; (c) hepatic O2 consumption is only marginally better preserved during and after pulsatile CPB than with non-pulsatile perfusion. We conclude that: (a) pulsatile CPB tends to maintain hepatic blood flow through a relative reduction in HA vascular resistance and an improvement in PV flow produced passively by a greater pump flow rate; (b) pulsatile CPB less effectively benefits hepatic O2 consumption because of poor O2 uptake from the hepatic PV blood supply.


2009 ◽  
Vol 24 (3) ◽  
pp. 245-249 ◽  
Author(s):  
Luisa Santambrogio ◽  
Cristian Leva ◽  
Giorgio Musazzi ◽  
Piergiorgio Bruno ◽  
Andrea Vailati ◽  
...  

2015 ◽  
Vol 802 ◽  
pp. 617-622 ◽  
Author(s):  
M.A.Z. Mohd Remy Rozainy ◽  
A.W. Khairy ◽  
Ismail Abustan ◽  
Mohd Mustafa Al Bakri Abdullah

Experimental study of hydraulic physical model investigates the flow characteristics in the pump sump. The model features four pumps (7.91 L/s for pump 1 and 2, and 4.74 L/s for pump 3 and 4) with a total of 9 cases of study. Different values of water depth (180mm, 200mm, and 300mm) and pump flow rate (15L/s, 20L/s, and 25L/s) were conducted. Velocity measurements at the dividing cross section were obtained by an Acoustic Doppler Velocimeter (ADV), pump flow rate by flow meter (Dyna Handheld Transit Time Ultrasonic Flow Meters) and swirl angle in the suction intakes were measured by a vortimeter/rotometer. No vortices were occurred near the suction intake at the high and medium water level conditions. In the low water level condition with high flow rate (25L/s), vortex Type 4 or 5 were observed near the suction intake and this condition is unacceptable. Since this condition indicate the presence of vortices more than Types 2 and an uneven flow through the suction intake, this can be categorized as the worst case and not recommended for pump sump operation.


Sign in / Sign up

Export Citation Format

Share Document