Structure and Optical Properties of Al1−xScxN Thin Films

2013 ◽  
Vol 537 ◽  
pp. 140-143 ◽  
Author(s):  
Jing Yang ◽  
Miao Miao Cao ◽  
Yu Dong Li ◽  
Yi Gang Chen

In this study, c-axis oriented AlN and Al1−xScxN films have been successfully grown on Si (100) and quartz glass by DC magnetron reactive sputtering method. The XRD patterns show that the crystal structure of the Al1−xScxN films is (002) orientation. The grain size and band gap energy (Eg) of the Al1−xScxN films decrease as the Sc concentration increases. The frequency of the E2 (high) mode observed in the Al1−xScxN films shows higher red shift compared to that observed in AlN film and the peak shifts to the low wave number with the increasing of Sc concentration.

2018 ◽  
Vol 96 (7) ◽  
pp. 826-830
Author(s):  
Sinan Temel

ZnS thin films were deposited onto glass substrates by chemical bath deposition (CBD) technique at different deposition temperatures (75, 80, 85, 90 °C) with non-toxic complexing agent tri-sodium citrate. Effects of deposition temperature on structural, morphological, and optical properties of thin films were investigated by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet–visible spectroscopy, respectively. The XRD results show that all produced ZnS thin films have cubic structure. The calculated grain size values are between 13 and 26 nm. It was observed that the grain size values increase and crystallization of films improve as the deposition temperature increases. The FESEM images reveal that film surfaces are formed by almost homogeneously dispersed nanostructured particles. Optical characterization results show that ZnS thin films have high transmittance of about 80% in the range of 400–800 nm with band gap energy values between 3.52 and 3.65 eV. As the deposition temperature increases, the band gap energy values increase. According to these results, it was observed that the structural, morphological, and optical properties of ZnS films vary depending on the deposition temperature.


Author(s):  
Atefeh Nazari Setayesh ◽  
Hassan Sedghi

Background: In this work, CdS thin films were synthesized by sol-gel method (spin coating technique) on glass substrates to investigate the optical behavior of the film. Methods: Different substrate spin coating speeds of 2400, 3000, 3600 rpm and different Ni dopant concentrations of 0 wt.%, 2.5 wt.%, 5 wt.%) were investigated. The optical properties of thin films such as refraction index, extinction coefficient, dielectric constant and optical band gap energy of the layers were discussed using spectroscopic ellipsometry method in the wavelength range of 300 to 900 nm. Results: It can be deduced that substrate rotation speed and dopant concentration has influenced the optical properties of thin films. By decreasing rotation speed of the substrate which results in films with more thicknesses, more optical interferences were appeared in the results. Conclusion: The samples doped with Ni comparing to pure ones have had more optical band gap energy.


2014 ◽  
Vol 14 (3) ◽  
pp. 421-427 ◽  
Author(s):  
Deuk Yong Lee ◽  
Ju-Hyun Park ◽  
Young-Hun Kim ◽  
Myung-Hyun Lee ◽  
Nam-Ihn Cho

2016 ◽  
Vol 40 (2) ◽  
pp. 179-186 ◽  
Author(s):  
Md Saiful Islam ◽  
Chitra Das ◽  
Mehnaz Sharmin ◽  
Kazi Md Amzad Hussain ◽  
Shamima Choudhury

Effects of indium doping (concentration 0.2, 0.3 and 0.4%) on the optical properties of GaAs thin films were studied. Thin films of 600 nm were grown onto chemically and ultrasonically cleaned glass substrate by thermal evaporation method in high vacuum (~10-4 Pa) at 50°C fixed substrate temperature. The samples were annealed for 15 minutes at a fixed temperature of 200°C. The thicknesses of films were being measured in situ by a quartz crystal thickness monitor during deposition. The transmittance and reflectance data were found using UV-VIS-NIR spectrophotometer in the photon wavelength range of 310 ~ 2500 nm. These data were utilized to compute the absorption coefficient, refractive index, extinction co-efficient and band gap energy of the studied films. Here transmittance was found 78 for 0.2% indium doping concentration. The band gap energy decreased with the increase of doping concentration.Journal of Bangladesh Academy of Sciences, Vol. 40, No. 2, 179-186, 2016


2005 ◽  
Vol 88 (5) ◽  
pp. 1186-1189 ◽  
Author(s):  
Toshio Suzuki ◽  
Piotr Jasinski ◽  
Vladimir Petrovsky ◽  
Harlan U. Anderson

2012 ◽  
Vol 616-618 ◽  
pp. 1773-1777
Author(s):  
Xi Lian Sun ◽  
Hong Tao Cao

In depositing nitrogen doped tungsten oxide thin films by using reactive dc pulsed magnetron sputtering process, nitrous oxide gas (N2O) was employed instead of nitrogen (N2) as the nitrogen dopant source. The nitrogen doping effect on the structural and optical properties of WO3 thin films was investigated by X-ray diffraction, transmission electron microscopy and UV-Vis spectroscopy. The thickness, refractive index and optical band gap energy of these films have been determined by analyzing the SE spectra using parameterized dispersion model. Morphological images reveal that the films are characterized by a hybrid structure comprising nanoparticles embeded in amorphous matrix and open channels between the agglomerated nanoparticles. Increasing nitrogen doping concentration is found to decrease the optical band gap energy and the refractive index. The reduced band gaps are associated with the N 2p orbital in the N-doped tungsten oxide films.


1991 ◽  
Vol 243 ◽  
Author(s):  
Chien H. Peng ◽  
Jhing-Fang Chang ◽  
Seshu B. Desu

AbstractOptical properties were investigated for undoped, La-doped, and Nd-doped Pb(ZrxTi1-x)O3 thin films deposited on sapphire substrates by metalorganic decomposition (MOD) process. Refractive index and extinction coefficient of these films were calculated from transmission spectra in the wavelength range of 300 to 2000 nm. The packing densities of these films were calculated from the refractive index data by using the effective medium approximation. Band gap energies of these films were also reported under the assumption of direct band-to-band transition. The refractive index and band gap energy of PZT films showed a linear dependence on Zr/Ti ratio. The refractive index decreased, while the band gap energy increased with increasing zirconium content. It was also found that both La-doped and Nd-doped PZT films had higher refractive indices than those of undoped PZT films with the same Zr/Ti ratio (50/50).


2017 ◽  
Vol 895 ◽  
pp. 33-36 ◽  
Author(s):  
Bouzid Boudjema ◽  
Radouane Daira ◽  
Abdenour Kabir ◽  
Rafika Djebien

Our work consists to the deposition of copper oxide (CuO) thin films onto glass substrates by the spray pyrolysis method. The precursor solution was copper chloride of 0.1 M and the deposition rate was 5 ml/h. The time of spray varied between 5 and 20 min and the substrate temperature was kept at 350°C. The structural, optical and electrical properties of CuO films were investigated, as a function of the spray time, by X-ray diffraction (XRD), Raman scattering, UV-visible spectroscopy in addition to the measurements of the thickness and the electrical resistivity. The obtained results indicated that our films were polycrystalline with a preferential orientation along the (111) planes. The peaks intensity as well as the grain size increased as a function of the spray time indicating the improvement of the films crystalline structure. The Raman spectroscopy confirmed the formation of the CuO phase. The UV-visible transmission varied between 36% and 53% and the band gap energy decreased from 2 to 1.72 eV as a function of the spray time. The electrical resistivity of the films decreased from 514 to 72 kΩcm and correlated with the decrease of the band gap energy and the increase of the grain size.


2012 ◽  
Vol 36 (2) ◽  
pp. 233-240 ◽  
Author(s):  
M R A Bhuiyan ◽  
M A H Miah ◽  
J Begum

Zinc selenide (ZnSe) thin films were deposited on to chemically and ultrasonically cleaned  glass substrates at different substrate temperatures from room temperature to 200°C keeping the  thickness fixed at 300 nm by using thermal evaporation method in vacuum. The structural properties of the films were ascertained by X-ray diffraction (XRD) method utilizing a  diffractometer. The optical properties were measured in the photon wavelength ranging between 300 and 2500 nm by using a UV-VIS-NIR spectrophotometer. The XRD patterns reveal that the  films were polycrystalline in nature exhibiting f.c.c zincblende structure with average lattice parameter, a = 5.6873Å. The grain size, strain and dislocation densities of the films have bee calculated. The optical transmittance and reflectance were utilized to compute the absorption  coefficient, band gap energy and refractive index of the films. The band gap energy of the films  was extracted from the absorption spectra. The direct band gap energy of the films slightly increases with substrate temperature.DOI: http://dx.doi.org/10.3329/jbas.v36i2.12969Journal of Bangladesh Academy of Sciences, Vol. 36, No. 2, 233-240, 2012


Sign in / Sign up

Export Citation Format

Share Document